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Human:

Natural Language Generation is everywhere 
(Machine Translation) 

Input:
Ο πρόεδρος των ΗΠΑ Ντόναλντ Τραμπ γνωστοποίησε ότι δεν 
 θα πάει στο ετήσιο δείπνο της Ένωσης Ανταποκριτών Λευκού  
Οίκου (WHCA) στα τέλη του Απριλίου.

The president of the United States Donald Trump 
announced that he would not go to the annual dinner 
of the White House Correspondents' Association (WHCA) 
in late April. 
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Union (WHCA) in late April. 
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Natural Language Generation is everywhere 
(Dialogue Systems) 

What is the weather going to be 
like in Sitka

What is the weather going to be 
like in Chicago

No I meant Chicago

How about on Tuesday



Natural Language Generation is everywhere 
(Conversational Agents) 

…or when things get too emotional



(Harsley et al., CSCW 2016)

Natural Language Generation is everywhere 
(Educational Technology) 



(Krause et al., CVPR 2017)

Natural Language Generation is everywhere 
(Caption Generation) 

A man swinging a bat.



(Krause et al., CVPR 2017)

Natural Language Generation is everywhere 
(Caption Generation) 

A baseball player is swinging 
a bat. 

He is wearing a red helmet 
and a white shirt. 

The catcher’s mitt is behind 
the batter.

A man swinging a bat.
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Natural Language Generation 

‣  Input: Computer-interpretable representation of the world 

•  Select content 
•  Organize content in particular order 
•  Decide how to verbalise content 

‣  Output: Text

Input Text



know

I planet

lazy

inhabit

man

min mean max mod
ewind 10 15 20

dir W
temp 50 60 72
gust 5 10 13

public int TextWidth (string text) 
{ 

TextBlock t = new TextBlock(); 
t.Text = text; 
return (int) 
Math.Ceiling(t.ActualWidth); 

}

20x + 5y = γ

High quality source code is often 
paired with high level summaries of 
the computation it performs, for 
example in code documentation or in 
descriptions posted in online forums.
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know

I planet

lazy

inhabit

man

min mean max mod
ewind 10 15 20

dir W
temp 50 60 72
gust 5 10 13

public int TextWidth (string text) 
{ 

TextBlock t = new TextBlock(); 
t.Text = text; 
return (int) 
Math.Ceiling(t.ActualWidth); 

}

20x + 5y = γ

Place the heineken block west 
of the mercedes block.

Overcast, with a high of 70. 
Moderate westerly winds, with 
gusts as high as 13 mph.

I know the planet is inhabited by a 
lazy man.

Tammy bought 20 apples and 
5 oranges. How many fruits 
does she have now?

Get rendered width of string 
rounded up to the nearest integer.

High quality source code is often 
paired with high level summaries of 
the computation it performs, for 
example in code documentation or in 
descriptions posted in online forums.

⾼高品質のソースコードは、コードドキュメ
ントやオンラインフォーラムに掲載された
説明など、実⾏行行する計算のハイレベルの要
約と対になることがよくあります。

Machine Translation Concept-to-Text

Human-Robot Interaction

Educational Technology

Meaning Representations

Code to Language
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Existing Approaches 

‣ Rule-based frameworks 

‣ Modular architecture

Challenges

‣ Expensive to build 

‣ Hard to deploy to new applications

Successes
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Data-driven NLG 
‣ Learn generation process directly from data 

‣ Easier to build and maintain 

‣ Adapt to multiple domains

Challenges
‣ Require large corpora - NLG is low-resourced 

‣ New machine learning model for every application 
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Outline 
‣ Neural Network architecture for NLG 

‣ Learn from different inputs 

‣ Address low-resource problem 

‣ Generic framework for scaling to 
large corpora without extra annotation 

‣ Collect large datasets from community-based platform 

‣ Adapt to two applications 

‣ Meaning Representations 
‣ Code to Language



Neural NLG
Joint work with  

Srinivasan Iyer, Mark Yatskar 
Luke Zettlemoyer, Yejin Choi



Overview 
‣ Sequence to sequence architecture 

‣ End-to-end model w/o intermediate representations 

‣ Linearisation of input to string 

‣ Pre-process 

‣ Paired Training 

‣ Scalable data augmentation



Meaning Representations 

(Flanigan et al, NAACL 2016, Pourdamaghani and Knight, INLG 2016, Song et al, EMNLP 2016)

Input: Graph Structure 
(Abstract Meaning Representation - AMR; 
 Banarescu et al., 2013)
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ARG1-of
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mod

I knew a planet that was inhabited by a lazy 
man.

I have known a planet that was inhabited by 
a lazy man.

I know a planet. It is inhabited by a lazy 
man.

(Konstas, Iyer, Yatskar, Choi, Zettlemoyer, ACL 2017, to Appear)
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Meaning Representations 

(Flanigan et al, NAACL 2016, Pourdamaghani and Knight, INLG 2016, Song et al, EMNLP 2016)

Input: Graph Structure 
(Abstract Meaning Representation - AMR; 
 Banarescu et al., 2013)
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Encoderinput
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Sequence to sequence model 

Attention

Encoder Decoderinput output
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Linearization 

Graph —> Depth First Search

hold

person
meet

group

ARG0 ARG1

person

expert

ARG1-of

have-role

country

“United 
States”

official

date-entity city

“New York”2002 1

time location

name

ARG1

name

ARG2-of

ARG0-of

ARG2

year monthARG0

US officials held an expert group meeting in January 2002 in New York .
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Pre-processing 

Linearization —> Anonymization
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Experimental Setup 
AMR LDC2015E86 (SemEval-2016 Task 8) 
‣ Hand annotated MR graphs: newswire, forums 
‣ ~16k training / 1k development / 1k test pairs 

Train 
‣ Optimize cross-entropy loss

Evaluation 
‣ BLEU n-gram precision  

(Papineni et al., ACL 2002)



First Attempt 

TreeToStr: Flanigan et al, NAACL 2016 
TSP: Song et al, EMNLP 2016 
PBMT: Pourdamaghani and Knight, INLG 2016
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Language Model 
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data augmentation.

(Sennrich et al., ACL 2016)
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Adapt to other applications? 

‣ Structured input representation 
Meaning Representation of Natural Language 

Programming Language



Code to Language

Joint work with  
Srinivasan Iyer 

Luke Zettlemoyer, Alvin Cheung
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(Summarizing Source Code using a Neural Attention Model. Iyer, Konstas, Cheung, Zettlemoyer, ACL 2016)
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FROM stud_records  
WHERE marks < (SELECT max(marks) FROM stud_records);

SELECT max(col0)  
FROM tab0  
WHERE col0 < (SELECT max(col1) FROM tab1);
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2) Anonymize
3) Bag of Words Encoding 
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4) Bag of Words Encoding —>RNN Decoding 
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Community-based Datasets 

‣ (Accepted Answer, Post title) pairs 
‣ ~33K SQL / 66k C# examples



Results 

PBMT: MOSES Phrase-based MT system 
SUM-NN: Rush et al, EMNLP 2015
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SELECT * FROM  table  
ORDER  BY Rand()  LIMIT  10

Select random rows from mysql table

How  to  get  random  rows  from  a  
mysql database?
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CODE-NN

foreach (string  pTxt in xml.parent) { 
TreeNode parent = new TreeNode();    
foreach (string  cTxt in xml.child) { 
TreeNode child = new  TreeNode(); 
parent.Nodes.Add(child ); 

} 
}

Adding childs to a treenode dynamically in C#

How to get all child nodes in TreeView?

Reference

CODE-NN



Neural NLG Contributions 



Neural NLG Contributions 

‣ Adapt to multiple applications 
‣ Scale to very large corpora 

‣ Address low-resource problem
‣ Paired training general technique 
‣ Train on noisy community-based datasets 



Future Work
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Concept-to-Text 

(A Global Model for Concept-to-Text Generation. Konstas and Lapata, JAIR 2013; EMNLP 2013)

time min mean max mode
wind 12-3 3 5 7
wind 3-6 5 5 5
wind 6-9 5 6 7
dir 12-3 NW
dir 3-6 NE
dir 6-9 NE

temp 12-9 40 42 45
precip 12-3 25 

223
45 50

precip 3-6 15 30 50
precip 6-9 12 18 25
cover 12-3 50-75
cover

c
3-6 50-75

cover 6-9 75-100

Chance of rain then becoming overcast, with a high of 45.  
Calm to moderate northeast winds.

(Angeli et al. EMNLP 2010, Kim and Mooney COLING 2010)
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‣ sequences of records 
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hitting

agent victim victim part tool place

ballplayer baseball - baseball 
bat

baseball 
diamond

wearing

wearer clothing body part

ballplayer red helmet head

A baseball player is swinging 
a bat. 
He is wearing a red helmet 
and a white shirt. 
The catcher’s mitt is behind 
the batter.

wearing

wearer clothing body part

ballplayer white shirt torso

Encoder Document 
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Planner
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> I would like to follow up on  
   my speech therapy treatment.

Patient #3245 Log: 
You were admitted for acute 
subcortical  
cerebrovascular accident. […]  
Verbal impairment related to 
communication impairment was treated 
with speech therapy 3 months ago. 
[...]

< I can see in my logs, that we   
  started improving verbal  
  impairment due to the accident,  
  with speech therapy 3 months ago.  
  When would you like to book the    
  next  appointment?
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