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Abstract
Much of the data found on the world wide web is in numeric, tabular, or other non-

textual format (e.g., weather forecast tables, stock market charts, live sensor feeds), and

thus inaccessible to non-experts or laypersons. However, most conventional search en-

gines and natural language processing tools (e.g., summarisers) can only handle textual

input. As a result, data in non-textual form remains largely inaccessible. Concept-

to-text generation refers to the task of automatically producing textual output from

non-linguistic input, and holds promise for rendering non-linguistic data widely ac-

cessible. Several successful generation systems have been produced in the past twenty

years. They mostly rely on human-crafted rules or expert-driven grammars, implement

a pipeline architecture, and usually operate in a single domain.

In this thesis, we present several novel statistical models that take as input a set

of database records and generate a description of them in natural language text. Our

unique idea is to combine the processes of structuring a document (document plan-

ning), deciding what to say (content selection) and choosing the specific words and

syntactic constructs specifying how to say it (lexicalisation and surface realisation),

in a uniform joint manner. Rather than breaking up the generation process into a se-

quence of local decisions, we define a probabilistic context-free grammar that glob-

ally describes the inherent structure of the input (a corpus of database records and

text describing some of them). This joint representation allows individual processes

(i.e., document planning, content selection, and surface realisation) to communicate

and influence each other naturally.

We recast generation as the task of finding the best derivation tree for a set of input

database records and our grammar, and describe several algorithms for decoding in this

framework that allows to intersect the grammar with additional information capturing

fluency and syntactic well-formedness constraints. We implement our generators using

the hypergraph framework. Contrary to traditional systems, we learn all the necessary

document, structural and linguistic knowledge from unannotated data. Additionally,

we explore a discriminative reranking approach on the hypergraph representation of

our model, by including more refined content selection features. Central to our ap-

proach is the idea of porting our models to various domains; we experimented on four

widely different domains, namely sportscasting, weather forecast generation, booking

flights, and troubleshooting guides. The performance of our systems is competitive

and often superior compared to state-of-the-art systems that use domain specific con-

straints, explicit feature engineering or labelled data.
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Lay Summary

Much of the data found on the world wide web is in numeric, tabular, or other non-

textual format (e.g., weather forecast tables, stock market charts, live sensor feeds), and

thus inaccessible to non-experts or laypersons. However, most conventional search en-

gines and natural language processing tools (e.g., summarisers) can only handle textual

input. As a result, data in non-textual form remains largely inaccessible. Concept-to-

text generation refers to the task of automatically producing textual output from non-

linguistic input, and holds promise for rendering non-linguistic data widely accessible.

Several successful generation systems have been produced in the past twenty years.

They mostly rely on human-crafted rules, implement a pipeline architecture, and usu-

ally operate in a single domain, such as weather forecasts, virtual museums, etc.

In this thesis, we present several novel systems that take as input non-textual data,

(e.g., numeric tabular data in a weather forecast) and generate a description of it in

natural language text. Contrary to older systems that relied on human-crafted rules,

we acquire all the necessary information we need from the input data. We thus learn

which parts of the input to include, in what specific order, and which exact words to

choose in order to describe them, from frequently occurring patterns in the input. Our

unique idea is to combine the processes of creating a layout of the document, deciding

what to say and choosing the specific words and syntactic constructs specifying how to

say it, in a uniform joint manner. Traditionally, generation systems break down these

processes into separate computer programs, and tackle each of them individually and

independently. We chose instead to represent all of them globally in a single frame-

work, allowing each process to communicate and influence each other naturally. We

used our systems in several different domains, namely sportscasting, weather forecast

generation, booking flights, and troubleshooting guides. The output of our systems is

competitive and often superior to the output of other similar systems that also acquire

their knowledge from data, but include some form of human intervention (e.g., in the

weather forecast domain, they included rules that specifically instruct to mention rain,

if the corresponding percentage of rain is particularly high in the input data).
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Chapter 1

Introduction

1.1 Motivation

The explosion of the world wide web (WWW) has generated unprecedented amounts

of data and made them available to countless end-users. The way we access and pro-

cess information has been revolutionised multiple times: in the first years of its use

the WWW worked more as a replacement to libraries and galleries, hosting mostly

static content. In the last ten years, the advent of Web 2.0 and social media changed

the WWW to a more interactive, and user-centric environment. Consequently, this

development increased the amount of online user-generated data available online. Un-

deniably, a great part of the success of the WWW is due to information retrieval and

natural language processing (NLP) applications, which allow us to find and structure

the content available. Examples of such applications include various search engines,

automatic query suggestion, summarisation, and so on.

However, much of this content is in numeric, tabular form, or in a format otherwise

inaccessible to non-expert or casual users (see for example the density of the tabular

format of a weather forecast in Figure 1.1, and the clutter of are the aggregated graphs

in a stock market trend chart in Figure 1.2). This content is represented in many differ-

ent forms such as ontologies, databases, and formal logic, stored in various formats and

languages (Web Ontology Language - OWL, some sort of Structured Query Language

- SQL, lambda calculus) and is presented to the user in equally many ways (semantic

graphs, database tables, spreadsheet files, charts). An immediate consequence is that

search engines and existing NLP tools cannot directly handle this type of non-linguistic

information. Acquiring the appropriate expertise for reading and understanding such

data is costly and time-consuming. From the expert user’s perspective, processing

1



2 Chapter 1. Introduction

large amounts of similar-looking numerical data in a mechanical way quickly becomes

a mundane, laborious task and can occasionally lead to mistakes and errors. These are

some reasons for the growing interest in the NLP community in the past few decades,

to develop concept-to-text generation1 systems that automatically produce textual out-

put in natural language from non-linguistic input (Reiter and Dale, 2000).

A typical example application of a concept-to-generation system is to automatically

generate a weather forecast, from time series data representing various meteorological

measurements such as temperature and wind speed, as shown in Figure 1.1. Several

research studies, even commercial systems, have been successfully developed since the

early 1990s for this particular domain (e.g., FOG; Goldberg et al. 1994, SUMTIME-

MOUSAM; Reiter et al. 2005, inter alia). Another example application is to generate

user-specific descriptions of artefacts in the context of a digital museum, from infor-

mation stored in a database. M-PIRO (Isard et al., 2003) is such a system that produces

text of different detail given the age and background of the audience (children, adults,

or experts). Figure 1.3 shows an example of a typical input and output text catered for

an adult visitor. Similar systems in less common domains also exist such as, e.g., the

generation of letters to help people stop smoking (STOP; Reiter et al. 2003); Figure 1.4

illustrates an excerpt from a personalised document, generated automatically given the

filled in questionnaire from its recipient. Finally, BabyTalk (Portet et al., 2009) (see

Figure 1.5) is a generation system that summarises clinical data about premature babies

in neonatal intensive care units. Given raw sensor data and a set of actions performed

by medical staff, it outputs a summary of the health of the baby personalised individu-

ally for doctors, nurses and family.

Despite the prominent success of concept-to-text generation systems, there are a

few considerable downsides with the techniques they adopt. First of all, adapting

individual systems to an entirely different domain or porting them to another lan-

guage, practically entails re-engineering and testing a good part of them again. The

reason is simply because most of the current generation systems rely on rules and

hand-crafted specifications (such as in-domain grammars) that collectively define the

following modular decisions: which parts of the input should be selected (content plan-

ning), how they should be combined into textual form (sentence planning), and how

1Historically, the term concept-to-text generation coincided with the term natural language genera-
tion (NLG), until more recently other relevant tasks, such as text-to-text generation emerged. Concept-
to-text generation systems assume non-linguistic input and thus differ from text-to-text generation appli-
cations (e.g., summarisation) which transform text input into some other form (e.g., shorter or simpler)
of textual output. In this work we assume the original meaning for NLG, hence we will be using both
terms interchangeably.
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they will be presented in natural language (surface realisation). Another issue is that

a lot of manual effort is required to annotate input data, often by consulting experts in

a domain; this inevitably increases the cost of the system and constrains its applicabil-

ity, given the limited number of fully-annotated data available at hand. Therefore the

following question naturally arises:

How can we achieve cheap and portable concept-to-text generation sys-
tems?

Recent advances in the past ten years in other fundamental fields of NLP such as

syntactic parsing, grammar induction, and machine translation (among others), have

been all based in statistical models, that draw their knowledge entirely from data. The

paradigm shift from rule-based to probabilistic models has started influencing imple-

mentation decisions in the generation community as well (Reiter et al., 2005; Belz,

2008; Chen and Mooney, 2008; Angeli et al., 2010; Kim and Mooney, 2010). Data-

driven approaches are attractive because we can abstract the internal representation

of the input by automatically learning patterns of document planning or surface real-

isation directly from the data, using mathematically-grounded statistical methods. In

this way, we can avoid restrictive heuristics and hand-crafted expert-driven rules. It is

possible to port a generation system to different domains and languages merely by re-

training it on different input data, while leaving the structure of the model unchanged.

It is also important to note that the amount of effort required to develop and re-train

such methods is considerably less compared to developing rule-based modules; this

translates to more economical solutions, which in turn makes their reach to the general

public wider.

In this work we will present a set of statistical models that capture the generation

process jointly; we assume a simple (widely-accepted) database schema as the rep-

resentation of the input, and draw all the necessary knowledge to generate the final

output text from data. More importantly we show that the same models can port to

several domains, via re-training on different input (we experimented on four different

domains). Finally, even though we focus on English, the lexicalisation and rendering

of text in our models does not make any language specific assumptions.

1.2 Thesis Contributions

The majority of existing end-to-end generation systems (especially the earliest in the

field) attribute their success to one or more of the following characteristics:
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Date 05/04/13

Hour (EDT) 14 15 16 17 18 19 20 21 22 23

Temperature (F) 57 57 57 56 54 52 50 50 48 47

Dewpoint (F) 40 38 38 37 37 35 36 36 35 35

Heat Index (F)

Wind (mph) 16 16 17 17 15 11 9 8 7 6

Wind Dir E E E E E E E E E E

Gust

Sky Cover (%) 0 0 0 0 1 3 4 21 38 55

Pcpn. Potential (%) 0 0 0 0 0 0 0 0 0 0

Rel. Humidity (%) 53 49 49 49 52 52 58 58 60 63

Thunder – – – – – – – – – –

Rain – – – – – – – – – –

This Afternoon: Sunny, with a high near 58. East wind around 16 mph.

Tonight: Increasing clouds, with a low around 40. Northeast wind 6 to 9 mph.

Figure 1.1: Weather forecast example captured from www.weather.gov, on 04 May

2013, at 7.28pm for Boston, MA.
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Figure 1.2: Typical stock market trend chart example for the Nasdaq composite index

captured from stockcharts.com, on 17 May 2013.
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ROOT

exhibit

statue

kouros

exhibit7

exhibit12
complex-statue

portrait

imperial-portrait

coin

jewel

relief

. . .

a-location

museum

museum1

archeological-site
. . .

This exhibit is a kouros; it was created during the archaic period and it dates from

the 6th century B.C. It is made of Parian marble, by Aristion, and it originates

from Merenta, Attica. Currently it is in the Archaeological Museum of Athens.

• Other exhibits created during the archaic period:

– A portrait made from marble

– A panathenaic amphora originally from Attica

• Other exhibits that originate from Merenta, Attica:

– A kori created during the archaic period

Figure 1.3: Example input (only a small excerpt is shown) and output of the M-PIRO

system (Isard et al., 2003). We highlight in red the part of the input knowledge base

hierarchy that is chosen and the corresponding resulting text.
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Smoking Information for Jane Smith

Dear Mrs. Smith
—
Thank you for taking the trouble to return the
smoking questionnaire that we sent you. It ap-
pears from your answers that although you do
not intend to stop smoking in the near future, you
would like to stop if it was easy. You think it
would be difficult to stop because you think you
are too addicted to the nicotine in cigarettes, you
find it difficult to resist the craving for cigarettes,
and you don’t have the willpower. However, you
have reasons to be confident of success if you did
try to stop and there are ways of coping with the
difficulties.
—
You have good reasons to stop...
People stop smoking when they really want to
stop. It is encouraging that you have many good
reasons for stopping. The scales are tipped in
your favour.
——

Things you Like Things you Dislike
It’s expensive
It makes you less fit
It’s bad for you
It’s bad example for kids
It’s unpleasant for others
You’re addicted
It’s a smelly habit

It stops stress Other people disapprove
—
You could do it
Altough you do not feel confident that you would
be able to stop if you where to try, you have sev-
eral things in your favour.

• Your partner doesn’t smoke.

• You have stopped before for over three
months.

• You expect support from your partner,
your family, and your friends.

• You are a light smoker.

• You have good reasons for stopping
smoking.

We know that all of these make it more likely
that you will be able to stop. Most people who
stop smoking for good have more than one at-
temp. You can learn from the times you tried
before and be more prepared if you try again.
—
Overcoming the hurdles...
You said in your questionnaire that you might
find it difficult to stop because you are addicted
to cigarettes. If you were to stop smoking it
might take a while for your body to get used to
not having nicotine. While this is happening you
might experience unpleasant side effects, but they
will go away. Although you did not find nicotine
patches useful last time it might be worth trying
them again. They help to reduce the withdrawal
symptoms while you break the habit of smoking.
You can find more information about nicotine
patches on the back page of this leaflet.
—
For more advice and support...
If you decide to stop smoking in the future and
you would like any advice or support you could
get this from your GP or practice nurse. You
could also phone Smokeline (telephone: 0800
84 84 84). Calls are free and there is someone to
talk to from 12 midday to 12 midnight.
We hope this letter will help you feel more con-
fident that you could stop smoking if you really
want to. Think about the reasons why you would
like to stop smoking for a few minutes each day.
We’re sure you wouldn’t regret stopping.
With best wishes,
Aberdeen Health Care.

Figure 1.4: A letter generated by the STOP system (Reiter et al., 2003).
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Sensor Data

Full Descriptor Time
SETTING;VENTILATOR;FiO2 (36%) 10.30
MEDICATION;Morphine 10.44
ACTION;CARE;TURN/
CHANGE POSITION;SUPINE 10.46-10.47
ACTION;RESPIRATION;HANDBAG BABY 10.47-10.51
SETTING;VENTILATOR;FiO2 (60%) 10.47
ACTION;RESPIRATION;INTUBATE 10.51-10.52

Action Records

Doctor Output
By 11:00 the baby had been hand-bagged a number of times causing 2 successive bradycardias. He
was successfully reintubated after 2 attempts. The baby was sucked out twice. At 11:02 FIO2 was
raised to 79%.

Nurse Output
Respiratory Support - Current Status
Currently, the baby is on CMV in 27% O2. Vent RR is 55 breaths per minute. Pressures are 20/4
cms H2O. Tidal volume is 1.5. SaO2 is variable within the acceptable range and there have been
some desaturations.
. . .
Events During the Shift
A blood gas was taken at around 19:45. Parameters were acceptable. pH was 7.18. CO2 was 7.71
kPa. BE was -4.8 mmol/L.

Family Output
John was in intensive care. He was stable during the day and night. Since last week, his weight
increased from 860 grams (1 lb 14 oz) to 1113 grams (2 lb 7 oz). He was nursed in an incubator.
Yesterday, John was on a ventilator. The mode of ventilation is Bilevel Positive Airway Pressure
(BiPAP) Ventilation. This machine helps to provide the support that enables him to breathe more
comfortably. Since last week, his inspired Oxygen (FiO2) was lowered from 56% to 21% (which is
the same as normal air). This is a positive development for your child.

Figure 1.5: Example input and multiple personalised output texts for different readers
generated by the BabyTalk system (Portet et al., 2009).
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• Expert knowledge deployed for the creation of hand-crafted rules that define a

representation of usually a single domain, or the grammar itself which is also a

set of hand-crafted rules. This of course results in high quality text, matching

human output.

• The use of manually annotated corpora with features such as discourse relations

or alignments between the structural representation of the input and the textual

output (McKeown, 1985a; Hovy, 1993).

• The decomposition of the generation process into individual components or mod-

ules, so as to alleviate the added engineering effort of performing many steps

simultaneously (Goldberg et al., 1994; Reiter et al., 2005). The intermediate

input-output flow between modules can benefit from further supervision or rule-

based intervention.

More recent approaches attempt to acquire the necessary linguistic knowledge to per-

form generation directly from data, thus obviating the need for expert rule-based sys-

tems. However, they tend to focus on specific components of the generation process,

such as content selection (Barzilay and Lapata, 2005a; Snyder and Barzilay, 2007), or

surface realisation (Lavoie and Rambow, 1997); rather few data-driven systems exist

that tackle generation in an end-to-end manner. Notably, the works of Angeli et al.

(2010) and Kim and Mooney (2010) are such examples. However, they rely on some

form of human intervention and domain knowledge and still decompose generation

into parts.

The work we present in this thesis adopts an entirely data-driven approach, which

sets it apart from earlier and more recent work on concept-to-text generation. Our

modelling approach is end-to-end: given an input set of database records, we generate

an output text that best describes it. More specifically, we propose a set of models that:

• Recast generation as a probabilistic parsing problem. We construct a syntactic

probabilistic context-free grammar that globally captures the conceptual input

regardless of the domain, and develop several parsing algorithms in order to

generate the textual output.

• Learn all the necessary document, structural and linguistic knowledge from unan-

notated data. During training, we only need some conceptual input in the form

of database records and collocated unaligned text.
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• Jointly perform all major parts of the generation process, namely ‘what to say’

and ‘how to say’, in a single framework, fully benefiting from their interaction.

Finally, we evaluate our systems on four different real-world domains using both au-

tomatic metrics and human judgement studies. Our results are competitive or superior

to other data-driven end-to-end systems (Angeli et al., 2010; Kim and Mooney, 2010),

without relying on hand-engineering or expert domain knowledge.

1.3 Thesis Outline

The rest of the thesis is structured as follows:

• In Chapter 2 we discuss the consensus pipeline architecture of a typical concept-

to-text generation system. Then we provide a brief overview of the field from

the early rule-based systems to the more recent data-driven approaches.

• In Chapter 3 we formulate the problem of generating text from a set of database

records, where each record has fields and each field takes either a categorical,

string or integer value. Then we present the four domains we experimented on,

and finally review the evaluation methodology we adopted in order to measure

the performance of our systems.

• In Chapter 4 we present our joint concept-to-text generation model. We begin by

extending an existing content selection model (Liang et al., 2009), and recasting

it into a probabilistic context-free grammar. Then we formulate several decoding

algorithms based on the CYK parser (Kasami, 1965; Younger, 1967). We show

how to efficiently integrate our decoder with external linguistically motivated

models, in order to guarantee fluent and grammatical output. We present an im-

plementation of our decoders using hypergraphs and evaluate it on four domains,

achieving results comparable or state-of-the-art against competitive generation

models (Angeli et al., 2010; Kim and Mooney, 2010).

• In Chapter 5 we extend the basic model from Chapter 4 by introducing a set of

rules that operate on the document level. Our aim is to induce document plans

directly from training data, that can better guide the selection and ordering of

database records in the final output, based on more global decisions compared

to the local content selection of the previous chapter. We also show an efficient
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way to extract document-level rules from data in order to restrict the exponential

search space incurred by the new rules. Experiments on two multi-sentence

corpora show that the extended model obtains superior performance compared

to the original and the baseline models.

• In Chapter 6 we present an exploratory study on field-level content selection by

discriminatively reranking the hypergraph implementation presented in Chap-

ter 4. In this chapter we depart from the unsupervised training of the previous

two models (using EM), and experiment with lexical and more importantly field-

level features, which we train using the structured perceptron algorithm (Collins,

2002). Evaluation on one challenging domain yields promising results.

• In Chapter 7 we conclude this thesis and discuss some interesting avenues for

future research within the realm of data-driven joint models for concept-to-text

generation.

Some of the work presented here has been previously published in Konstas and La-

pata (2012b, 2013a) (Chapter 4), Konstas and Lapata (2013b) (Chapter 5) and Konstas

and Lapata (2012a) (Chapter 6).





Chapter 2

Background

In this chapter we will provide an overview of the field of concept-to-text generation.

We begin by describing a consensus pipeline architecture defined by the majority of

systems in the 1980s and 1990s, and then focus on some pivotal early generation sys-

tems. Then we move on to present more recent data-driven approaches, leading finally

to end-to-end probabilistic systems.

2.1 Architecture of a NLG System

2.1.1 Input

According to Reiter and Dale (2000, p. 43) the input to a typical NLG system can be

defined as follows:

we can characterise the input to a single invocation of an NLG system [...]
as a four-tuple 〈k, c, u, d〉, where k is the knowledge source to be used,
c is the communicative goal to be achieved, u is a user model and d is a
discourse history.

The knowledge source is the domain-specific information available to the system, usu-

ally in the form of knowledge base entries, expert system output, ontology structures,

database records, or even in the form of formal meaning representations such as lambda

calculus. The heterogeneity of applications inevitably leads to varied representations

and content; hence there is no actual characterisation of this part of the input, other

than it constitutes the entry point of information to the system.

The communicative goal is easier to define as it describes the purpose of the gen-

erated text. For example, the communicative goal of a sportscaster NLG system is

to generate comments on the events happening at a particular time in the context of

13
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Content Planning

Sentence Planning

Surface Realisation

Text

Knowledge Source Communicative Goal

Figure 2.1: Pipeline of modules in a typical NLG system.

a sports game. Similarly, the communicative goal of a weather forecast NLG system

(see Figure 1.1) is to output a summary of the weather for the next 24 hours given the

current and predicted measurements of various meteorological phenomena.

The user model is a characterisation of the reader for whom the generated text

is intended. While usually not explicitly specified in most systems we will examine,

there are situations where this parameter can affect the processing steps of a system

and its output. For example, a weather forecast generator might produce different

texts for different users depending on whether they are experts (e.g., meteorologists or

laypersons, farmers, residents in an urban or a coastal area, fishermen, and so on).

Finally, the discourse history models the text that has been generated by the sys-

tem so far. This is useful in case a system wants to keep track of the entities in the

knowledge source that have been mentioned, in order to inform the use, for example,

of anaphoric expressions in subsequent references to them, later in the text. This is

more common in the NLG part of dialogue systems, which need to keep track of what

has been mentioned in each dialogue turn and update their state accordingly. Even in

single-interaction systems, i.e., systems which are executed once to generate a text, it

might be necessary to aggregate information, which will be reflected in later execu-

tions. For example, a weather forecast generator may keep track of previously gener-

ated forecasts and produce a sentence contrasting a noteworthy characteristic: Today it

is going to be warmer than yesterday. Note, that for most of the systems we will be
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describing in this chapter, and in the work presented in this thesis, we will assume that

the user model and the discourse history are empty, and we will not deal with them

henceforth.

2.1.2 Output

The output of a typical NLG system is primarily a text. This usually corresponds

to a string of words, that form sentences, paragraphs and sections, depending on the

domain and application at hand. In addition to text, a system may also output additional

information such as prosodic cues, HTML markup, word-processor directives, and so

on. The length of the resulting document varies greatly and may range from a single

word (e.g., an utterance in a dialogue system) to a multi-paragraph document (see

example in Figure 1.4).

2.1.3 Modules Pipeline

We now move on to the actual architecture of a typical generation system. Initial NLG

efforts (KAMP; Appelt 1985, Danlos 1984) adopted a rather monolithic approach to

generation; there was no clear distinction among (rule-based) decisions that selected,

ordered and realised into text the information contained in the knowledge source. Sub-

sequent systems began to form a consensus architecture that breaks down the genera-

tion process into a series of modules. Each module is concerned with a specific well-

defined task and is separate from the rest. The inter-communication between modules

is made possible only via messages exchanged between each other; one module takes

a particular type of message as input from its predecessor and outputs another type of

message to its successor. NLG system designers usually name the modules differently,

to accommodate the needs of the problems they each try to solve. In the following we

use their most common characterisation (adapted from Reiter (1994) and Reiter and

Dale (2000), see Figure 2.1):

Content Planning takes the initial input knowledge source k and produces an inter-

nal semantic representation, i.e., an abstract specification of what should be conveyed

in the resulting text. This process often entails two separate sub-processes:

Content Selection is the task that determines what parts of the source are going to

be chosen to be included in the final text, which parts should be omitted and in what

order they should be mentioned.
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IDENTIFICATION

(1) Identification (class & attribute/function)

(2) [Analogy/Constituency/Attributive/Renaming]+

(3) Particular-illustration/Evidence+

(4) [Amplification/Analogy/Attributive]

(5) [Particular-illustration/Evidence]

Eltville (Germany) (1) An important wine village of the Rheingau region. (2) The vine-

yards make wines that are emphatically of the Rheingau style, (3) with a considerable

weight for a white wine. (4) Taubenberg, Sonnenberg and Langenstuck are among

vine-yards of note.

Figure 2.2: Document planning using the identification schema from TEXT (McKeown,

1985b) along with an example taken from Hovy (1993). Numbers in parentheses in-

dicate the different parts of the schema, brackets indicate optional parts, the forward

slash (/) denotes an either-or relation, while the plus symbol (+) denotes one or more

instances of the particular part.

Document Planning or document structuring is the part that organises the infor-

mation emitted by the previous component in a rhetorically coherent manner.

Note that these two sub-modules are often interleaved (Moore and Paris, 1989). In

some cases (e.g., in recent data-driven systems) the document planning component can

be omitted, for the sake of simplicity (Kim and Mooney, 2010; Angeli et al., 2010).

The output of this module is a document plan. A popular representation for a

document plan used in early systems are discourse schemata (McKeown, 1985b). A

discourse schema encodes a predefined set of instructions that define the order in which

information from the knowledge source should be mentioned in the resulting test. Fig-

ure 2.2 shows the identification schema and an example of it. Another form of repre-

sentation is trees where the internal nodes denote discourse information and the leaf

nodes correspond to parts of the input chosen by the content selection process (Hovy

(1993), see Figure 2.3 for an example).

Sentence Planning takes the document plan from the previous module and converts

it to linguistic structures, specifying content words and grammatical relationships. In

other words, a sentence planner operates as a proxy between the knowledge source
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Sequence

Sequence

Sky Cover Temperature

Narrative Sequence

Wind Direction Wind Speed

Increasing clouds, with a low around 40. Northeast wind 6 to 9 mph.

Figure 2.3: Document planning using a tree representation on the ‘Tonight’ forecast

example of Figure 1.1. Internal nodes correspond to RST relationships, while leaf nodes

refer to parts of the input.

and the text, and is engaged in decisions such as lexicalisation, generation of referring

expressions and aggregation. Briefly, lexicalisation refers to the task of choosing par-

ticular words (e.g., from a lexicon) that describe some parts of the input. Generating

referring expressions directs the choice of specific words that will enable entities in

the input to be identified uniquely and naturally given their context in the text. For ex-

ample, the referring expression for an entity that corresponds to a name, could be the

actual name (e.g. ‘Mary’) if it is mentioned for the first time in the text, and then ‘she’

or ‘her’ in subsequent mentions. Finally, aggregation is responsible for combining

pieces of information in the document plan together at the sentence level. An example

in the weather domain could be the conjunction of two semantically relevant entities,

as in ‘Chances of rain and thunderstorms’ instead of ‘Chance of rain. Chance of thun-

derstorms’. Figure 2.4 shows an example sentence plan that implements lexicalisation

and aggregation.

Similarly to document planning, parts of this module may be omitted or performed

jointly. Interestingly, as we will see in sections 2.2–2.3, more recent studies tend to

interleave sentence planning with document planning. Finally, the output of the sen-

tence planner is a text specification, again usually in the form of a tree, whose nodes

describe the structure of the text and whose leaves correspond to sentences. Notable

representations include the Sentence Planning Language (Kasper, 1989), Functional

Descriptions (Elhadad and Robin, 1998) and Meaning-Text theory (Mel’čuk, 1988).

Surface Realisation is the last module in the pipeline that renders the final text. It

takes as input the abstract text specification from the previous module and turns it into
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

TYPE: ABSTRACT SYNTAX

HEAD: |TO |

CONJ1:



TYPE: ABSTRACT SYNTAX

HEAD: |WIND |

SUBJECT:

REFERRING NP

OBJECT:
[

DIRECTION: NORTHEAST
]


MODIFIER:

REFERRING NP

OBJECT:
[

SPEED: 6
]




CONJ2:



TYPE: ABSTRACT SYNTAX

HEAD: |WIND |

SUBJECT:

REFERRING NP

OBJECT:
[

DIRECTION: NORTHEAST
]


MODIFIER:

REFERRING NP

OBJECT:
[

SPEED: 9
]





Figure 2.4: Abstract text specification corresponding to the sentence ‘Northeast wind 6

to 9 mph.’ represented in an Attribute-Value Matrix (AVM). ABSTRACT SYNTAX refers

to a high-level syntactic description of the resulting surface text, and REFERRING NP

corresponds to a complementary noun phrase. Notice the lexicalisation of the direc-

tion and speed with the values NORTHEAST and 6 and 9 respectively. Also note the

aggregation of the speed values, encoded in the two parts CONJ1 and CONJ2. Without

aggregation the resulting text would be ‘Northeast wind 6 mph. Northeast wind 9 mph.’

a string of words. Methods to perform this task range from simple canned text or

template-based techniques, to rule-based systems based on a formal linguistic theory

such as Functional Unification Grammar (SURGE; Elhadad and Robin 1998, FUG;

Kay 1984), Lexicalised Tree-Adjoining Grammar (SPUD; Stone and Webber 1998),

Meaning-Text theory (REALPRO; Lavoie and Rambow 1997), and Combinatory Cat-

egorial Grammar (CCG; White and Baldridge 2003). Figure 2.5 gives an example of

an abstract syntactic structure of a sentence, as specified in REALPRO.

The pipeline architecture is mainly motivated by two reasons. From an engineering



2.1. Architecture of a NLG System 19



HEAD: NONE

TENSE: NONE

SUBJ:



HEAD: |WIND |

NUMBER: SG

CLASS: COMMON-NOUN

ATTR:

HEAD: |NORTHEAST |

CLASS:ADJECTIVE





ATTR:



HEAD: |MPH |

COORD:



HEAD: |TO |SUBJ:

HEAD: |6 |

CLASS: CARDINAL




SUBJ:

HEAD: |9 |

CLASS: CARDINAL










Northeast wind 6 to 9 mph.

Figure 2.5: Deep Syntactic Structure example in Attribute-Value (AVM) format, with the

corresponding text. This is a typical abstract representation of a sentence in a surface

realiser (in this particular case REALPRO (Lavoie and Rambow, 1997)). SUBJ refers

to the subject of a clause, ATTR refers to a phrase modifier, and COORD defines a

conjunction. Notice how only content words, syntactic roles (e.g., subject of a phrase),

and syntactic features (e.g., the number of a noun) are specified; function words and

word ordering are decided at the final stage of decoding, subject to surface constraints

such as number and tense agreement.

(and hence economical) point of view, it is considered to be easier to build, debug,

deploy and maintain a system that consists of many small parts rather than one (Marr,

1976). In a more coupled environment, small changes in one part will potentially

reflect changes in many other parts as well; the situation can aggravate when more than

one developer is involved. From a cognitive point of view, there is some evidence that

supports the modular structure. In particular, clinical studies conducted by Ellis and
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Young (1996) with brain damage patients, showed that subjects who had lost certain

abilities did not suffer overall degradation in all the rest of their abilities. This claim

empirically supports the possibility that particular cognitive processes are taking place

in partial isolation from the rest. For example, they showed that patients could produce

syntactically correct utterances but could not organize utterances into coherent wholes,

or analogously they could perform surface generation but not content planning.

While the modular decomposition described above has been generally adopted, a

few approaches have relaxed the strict independence assumption, by allowing some lo-

cal feedback between adjacent modules (Rambow and Korelsky, 1992; Stone and Do-

ran, 1997). In general, the main argument against the strict pipeline architecture stems

from the fact that some linguistic phenomena can be better explained when looking

at constraints from different levels, such as morphology, syntax and semantics, at the

same time and compositionally, rather than in isolation. Another reason for the popu-

larity of the modular architecture is mostly historic. Computing resources are limited,

software engineering paradigms such as object-oriented programming, are yet to be

invented, or are used in limited scale, hence the need to adopt pipeline techniques.

In the following section we will focus on some well-known pipeline-based systems

focusing first on module implementations and then on complete systems. Then we will

describe more recent systems that adopt some notion of probabilistic modelling and

interestingly, depart from the idea of strict modularity.

2.2 Pipeline-based Systems

The literature reveals many examples of generation systems that produce high qual-

ity text, almost indistinguishable from human writing (Dale et al., 2003; Reiter et al.,

2005; Green, 2006; Turner et al., 2009; Galanis and Androutsopoulos, 2007). Such

systems often involve a great deal of manual effort. For instance, a typical content

planning module involves manually engineered rules based on the analysis of a large

number of texts from a domain-relevant corpus, and consultation with domain experts.

Sentence planning usually calls for engineering templates that capture stereotypical

paragraph structures. Analogously, surface realization is often based on a grammar

written by hand so as to cover the syntactic constructs and vocabulary of the domain.

Finally, both the input and the inter-communication messages require some form of

supervision, such as discourse-level annotation of the input text or rule-based categori-

sation of the document plans in order to identify cues for aggregation.
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2.2.1 Individual Components

The work of Hovy (1993) is the most notable early study on content planning based

on rhetorical structure theory, (Mann and Thompson, 1988)1. The RST relations are

encoded as operations in the context of an AI planner. They are recursively combined,

in order to satisfy as many entities of the input knowledge source as necessary and

are subject to manually created coherence restrictions. The output is a document plan

tree with RST relations as intermediate nodes, and nuclei and satellite content words—

manually mapped to the input entities—as leaves.

SPUD (Sentence Planner Using Descriptions, Stone and Doran 1997) is a sen-

tence planner that integrates constraints from syntax, semantics and pragmatics into a

common framework using Lexicalised Tree-Adjoining Grammar (LTAG; Joshi 1987).

The system assumes a sequence of goals from a content planner, and incrementally

combines elementary trees augmented with domain-specific semantic knowledge, us-

ing several predefined rhetoric conditions that guide the search in a top-down fashion.

Since the elementary trees are lexicalised, SPUD also performs realisation simultane-

ously during the parsing process.

REALPRO (Lavoie and Rambow, 1997) is a surface realiser which accepts as in-

put a text specification in Deep-Syntactic Structure representation (Mel’čuk, 1988)2.

Using a hand-crafted wide coverage grammar of the target language, and a lexicon of

domain-specific lexemes provided a priori by the sentence planner, it performs a series

of processes such as function word insertion, linearisation of the tree representation,

morphological inflection, and surface formatting (e.g., adding punctuation).

Finally, an interesting line of research on surface realisation from logical forms

is using chart realisation algorithms (Shieber, 1988; Kay, 1996; Moore, 2002; Car-

roll et al., 1999; White and Baldridge, 2003; White, 2004). The underlying idea is

that we can use the same grammar for both parsing and generation; instead of trans-

ducing strings to logical forms, we transduce logical forms to strings. We achieve

that by keeping track of partial string derivations in an agenda-based data structure

and combining them in a particular order according to the grammar rules and parsing

strategy. Shieber (1988) outlines an algorithm for chart realisation using instances of

1Briefly, RST defines relationships between two non-overlapping text spans, namely the nucleus and
the satellite. A relation definition consists of constraints on the nucleus, constraints on the satellite,
constraints on the combination of the nucleus and the satellite, and of the effect. Example relations are
elaboration, exemplification, contrast and narrative sequence.

2In Meaning-Text theory information is represented as a lexicalised, labelled (i.e., using syntactic de-
scriptors such as subject) dependency tree. The nodes of the tree are meaning-bearing lexemes (i.e., not
function words).
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the architecture for Earley and shift/reduce parsing. Similarly, Kay (1996) introduces

an algorithm schema for surface realising input in conjunctive logical form such as

that of Davison (Davidson, 1980). Moore (2002) proposes an efficient chart realiser

for unification grammars that is based on bottom-up parsing strategy, and guarantees

polynomial time under modest constraints on the expressivity of the semantic input.

White and Baldridge (2003) implement surface realisation using CCG and an efficient

bottom-up parser, addressing phenomena including argument cluster coordination, and

gapping.

2.2.2 End-to-End Systems

One of the earliest commercially successful systems that exemplifies the pipeline ap-

proach is FOG (Goldberg et al., 1994), a weather forecast generator used by Environ-

ment Canada, the Canadian weather service. FOG takes as input numerical simulations

from meteorological maps and uses an expert system for content planning to decide on

the structure of the document with some optional human intervention via a graphical

interface. For sentence planning and surface realization, the generator uses a grammar

specific to the weather domain, as well as canned syntactic structures written by expert

linguists and encoded in Backus Naur Form (BNF).

TEXT (McKeown, 1985b) uses a database from the Office of Naval Research and

provides information about vehicles and destructive devices. It combines content plan-

ning and sentence planning in one module called ‘strategic generation’, by making use

of manually crafted schemata of discourse, based on the rhetoric predicates of Grimes

(1975). After the necessary information from the knowledge source is selected, it is

represented as an ATN and then realised into natural language using a hand-written

grammar and dictionary.

More recently, Reiter et al. (2005) have developed SUMTIME-MOUSAM, a text

generator that produces marine weather forecasts for offshore oil-rig applications. The

content planner of the system is based on linear segmentation of the input (i.e., time

series data) and is informed by a pragmatic (Gricean) analysis of what should be com-

municated in weather forecasts (Sripada et al., 2003). Sentence planning relies on rules

that select appropriate time phrases, based on an empirical study of human-written

forecasts. Surface realization relies on special grammar rules that emulate the weather

sub-language of interest, again based on corpus analysis.
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2.3 Data-driven Systems

While existing generation systems can be engineered to obtain good performance on

particular domains, it is often difficult to adapt them across different domains. An al-

ternative is to adopt a data-driven approach and try to automatically learn the individual

generation components or even an end-to-end system.

2.3.1 Individual Components

Barzilay and Lapata (2005b) view content selection as an instance of collective classi-

fication. Given a corpus of database records and texts describing some of them, they

first use a simple anchor-based alignment technique to obtain records-to-text align-

ments. Then, they use the alignments as training data (records present in the text are

positive labels, and all other records negative) and learn a content selection model that

simultaneously optimizes local label assignments and their pairwise relations. Build-

ing on this work (still focusing only on content selection), Liang et al. (2009) present

a hierarchical hidden semi-Markov generative model that first determines which facts

to discuss and then generates words from the predicates and arguments of the chosen

facts. Their model is decomposed into three tiers of HMMs that correspond to chains

of records, fields and words. They use Expectation Maximization (EM) for training

and dynamic programming for inference. We will describe this model in more detail

in Section 4.1.

Duboue and McKeown (2001) present perhaps the first empirical approach to con-

tent planning. They use techniques from computational biology to learn the basic

patterns contained within a plan and the ordering among them. Duboue and McKe-

own (2002) learn a tree-like planner from an aligned corpus of semantic inputs and

corresponding human-authored outputs using evolutionary algorithms.

Barzilay and Lapata (2006) formulate the sentence planning sub-task of aggre-

gation at the conceptual level, as a supervised set partitioning problem where each

partition corresponds to a sentence. Given an aligned corpus of database entries and

corresponding sentences, they build a model that partitions a set of input entities into

non-overlapping subsets, subject to local (pairwise similarities) and global (overall

length) constraints. They encode their model as an integer linear program (ILP) and

solve it using standard optimisation tools.

Several data-driven approaches focus on (some parts of) sentence planning and

surface realisation in a common modelling framework. We briefly mention here sys-
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tems that specifically map meaning representations (e.g., some logical form or numeric

weather data) to natural language, using explicitly aligned sentence/meaning pairs as

training data. WASP−1 (Wong and Mooney, 2007) learns this mapping using a syn-

chronous context-free grammar (SCFG). They also integrate a language model with

their SCFG and decode the meaning representation input to text, using a left-to-right

Earley chart generator. Knight and Hatzivassiloglou (1995) create word lattices from

an existing sentence plan using a syntactic grammar and hand-crafted heuristics, and

then perform Viterbi search on the former by using n-gram language models in or-

der to produce the surface string. Belz (2008) creates a CFG by hand (using a set

of template-based domain-specific rules) but estimates probabilities for rule applica-

tion automatically from a development corpus. Ratnaparkhi (2002) uses a manually

crafted dependency-style grammar of phrase fragments in the context of a dialogue

system, incorporating among others long-range dependencies. More recently, Lu and

Ng (2011) propose a model that performs joint surface realization and lexical acqui-

sition from input that is represented in typed lambda calculus. They present a novel

SCFG forest-to-string generation algorithm, that captures the correspondence between

natural language and logical form represented by λ−hybrid trees.

2.3.2 End-to-End Systems

A few approaches have emerged more recently that combine content selection and sur-

face realization. Kim and Mooney (2010) present a generator that produces sportscast-

ing comments of robotic football games. They adopt a two-stage pipeline architecture:

using a generative model similar to Liang et al. (2009), they first perform content selec-

tion in order to select the salient entities from the knowledge source and then verbalize

the selected input with WASP−1 (Wong and Mooney, 2007), described above.

In contrast, Angeli et al. (2010) propose a unified content selection and surface real-

ization model which also operates over the alignment output produced by Liang et al.

(2009). Their model decomposes into a sequence of discriminative local decisions.

They first determine which records in the database to talk about, then which fields of

those records to mention, and finally which words to use to describe the chosen fields.

Each of these decisions is implemented as a log-linear model with features learned

from training data. Their surface realization component performs decisions based on

automatically extracted templates that are filtered with domain-specific constraints in

order to guarantee fluent output.
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In the following we will also present an end-to-end system that performs content

planning, rudimentary sentence planning (i.e., lexicalisation) and surface realization.

However, rather than breaking up the generation task into a sequence of local decisions,

we optimize what to say and how to say it simultaneously. We do not learn mappings

from a logical form, but rather focus on input which is less structured and possibly

more noisy. Our key insight is to convert a set of database records serving as input to

our generator into a PCFG that is neither hand crafted nor domain specific but simply

describes the structure of the input. The approach is conceptually simple, does not

rely on labelled data or any feature engineering. In order to generate fluent output

we intersect our grammar with external linguistically motivated models, and search

approximately both for the best derivation tree and generated string. Our generator

is not strictly modular; rather it models the different components of the generation

process jointly, thus allowing them to communicate naturally and influence each other.

2.4 Summary

To summarise, in this chapter we presented the consensus architecture for traditional

concept-to-text generation systems. The latter consists of three modules, namely con-

tent planning, sentence planning, and surface realisation. We reviewed some early

notable work on generators that tackle each module individually, as well as some

prominent pipeline-based end-to-end systems. We then presented more recent data-

driven approaches that model each module in isolation, and concluded with a series of

empirical end-to-end systems. In the following chapter we will define our generation

task, the input to our model, and the architecture of our system. We will also describe

the datasets we used, as well as our experimental methodology.





Chapter 3

Task Definition

In this chapter we define our generation task. We describe the input our model assumes

and give a general overview of the architecture of our system. Then we describe the

datasets we used, and finally outline the automatic evaluation metrics we use, as well

as the methodology we follow with regard to human evaluation.

3.1 Problem Formulation

Each record token ri ∈ d, with 1≤ i≤ |d|, has a type ri.t and a set of fields f associated

with it. Fields have different values fk.v and types fk.t (i.e., integer, categorical and

string), with 1 ≤ k ≤ |f|. For example, Figure 3.1 shows two records of type Wind
Speed, with four fields: time, min, mean, and max. The values of these fields are

06:00-21:00, 15, 20, and 30, respectively for the first record and 21:00-04:00, 0, 5,

and 8 for the second record; the type of time is categorical, whereas all other fields are

integers.

The training corpus consists of several scenarios, i.e., database records1 d paired

with texts w like those shown in Figure 3.1. In the weather forecast domain, a scenario

corresponds to weather-related measurements of temperature, wind, speed, and so on

collected for a specific day and time (e.g., day or night). In sportscasting, scenarios

describe individual events in the soccer game (e.g., passing or kicking the ball). In the

air travel domain, scenarios comprise of flight-related details (e.g., origin, destination,

1We do not make any specific assumptions as far as the database schema, or the format according
to which the records are stored (e.g., relational database, csv flat files, etc.), are concerned. We im-
plemented several converters from popular relational database management systems (DBMS) such as
MySQL, and from the proprietary formats of each input domain we experimented on. The converted
input to our systems is in a flat, human-readable format as shown in Appendix A.

27



28 Chapter 3. Task Definition

Wind Speed

Time Min (%) Mean (%) Max (%)

06:00-21:00 15 20 30

21:00-04:00 0 5 8

between 15 and 30 mph.

Figure 3.1: Two database records from the WEATHERGOV domain, of type Wind
Speed with the corresponding text ‘between 15 and 30 mph.’. The record in red is the

corresponding record to the text. Note that this correspondence is not known during

training.

day, time). For the troubleshooting guide, a scenario is a series of user interface (UI)

actions to perform on an operating system’s desktop environment (e.g., left-clicking on

icons, typing into text fields) and a small document describing this process in detail.

Note that none of these corpora is parallel, i.e., we do not use any form of alignment

between the database and the text. By relaxing this restriction we are faced with a

greater challenge as we need to learn the alignments as part of our model (see sec-

tions 3.3.1 and 4.2). However, it is a more realistic approach, given that most of the

readily available domains, for example on the WWW, such as product specifications

and their reviews, statistics of a football game and the summary of it, and so on, do not

contain any form of annotation or co-ordination between the text and the correspond-

ing database. During testing, we assume our generator takes as input a set of database

records d and outputs a text g that verbalizes some of these records.

In Figure 3.2 we outline our system architecture. Our goal is to first define a model

that naturally captures the (hidden) relations between the database records d and the

observed text w. Once trained, we can use this model to generate text g corresponding

to new records d. Our model is an extension of the hierarchical hidden semi-Markov

model of Liang et al. (2009) which we describe in detail in Section 4.1. For now

suffice it to say that our key idea is to recast this model as a probabilistic context-

free grammar (PCFG), therefore reducing the tasks of content selection and surface

realization into a common parsing problem (Section 4.2). An alternative would be to

learn a SCFG between the database input and the accompanying text. However, this

would involve considerable overhead in terms of alignment (as the database and the

text do not together constitute a clean parallel corpus, but rather a noisy comparable
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Temperature

Time Min Mean Max

06:00-21:00 9 15 21

Wind Speed

Time Min Mean Max

06:00-21:00 15 20 30

Cloud Sky Cover

Time Percent (%)

06:00-09:00 25-50

09:00-12:00 50-75

Wind Direction

Time Mode

06:00-21:00 S

S

...

S

...

S

...

S

...
S

...

?? ?
Cloudy, with temperatures

between 10 and 20 degrees.

South wind around 20 mph.

Training

S→ R(start)

R(ri.t)→FS(r j,start)R(r j.t)

R(ri.t)→FS(r j,start)

FS(r,r. fi)→F(r,r. f j)FS(r,r. f j)

FS(r,r. fi)→F(r,r. f j)

F(r,r. f )→W(r,r. f )F(r,r. f )

F(r,r. f )→W(r,r. f )

W(r,r. f )→α

W(r,r. f )→g( f .v)

FS0,1(temp1,start)

FS0,2(temp1,start)

F0,1(temp1,min)

F0,1(temp1,max)

F0,2(temp1,min)

F0,2(temp1,max)

FS1,2(temp1,start)

(2) Hypergraph

Representation

FS0,5(skyCover1.t,start)


mostly cloudy ? the morning

mostly cloudy ? a f ter 11am

mostly cloudy ? then becoming

· · ·



F0,2(skyCover1.t,%)


mostly cloudy

mostly clouds

cloudy ,

· · ·

 W4,5(skyCover1.t,time)
morning

11am

a f ter

· · ·


W0,1(skyCover1.t,%)

mostly

cloudy

sunny

· · ·



W1,2(skyCover1.t,%)
mostly

cloudy

sunny

· · ·



(3) k-best decoding

via integration

Testing

(1) PCFG Grammar

Figure 3.2: Outline of our system architecture. During training we need to find the

hidden correspondence between database records d and text w. We achieve this by

recasting this problem into a PCFG grammar which we represent using hypergraphs

(1). We train the weights of the grammar directly on the hypergraph (2). During testing

we output text g given only the database records d, by performing k-best decoding via

integration with linguistically motivated models (3). In pink we show the three different

stages of our model, and in light blue the best derivation path chosen by the decoder in

the last phase.
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corpus), as well as grammar training and decoding using state-of-the art SMT methods,

namely log-linear training, incorporating length penalisation, defining the beam of the

search, which we manage to avoid with our simpler approach. The conceptualization

of the generation task as parsing allows us to use the well-known CYK algorithm

(Kasami, 1965; Younger, 1967) in order to find the best g licensed by the grammar

(Section 4.3.1). We furthermore ensure that the resulting text is fluent by intersecting

our grammar with externally trained surface level models, namely a n-gram language

model and a dependency model (Section 4.3.2). Thus, our model will generate the text

deemed most likely by the grammar and the surface models.

We represent the grammar using weighted directed hypergraphs (Gallo et al., 1993).

During training, for each input scenario we create a hypergraph following the proce-

dure of Klein and Manning (2001); the weights on the hyperarcs correspond to the

weights of the rules of the PCFG. We estimate them using the EM algorithm and a dy-

namic program similar to the inside-outside algorithm (Li and Eisner, 2009). During

testing, given only the set of database records d, we generate text output g, by building

a hypergraph and then run a dynamic program equivalent to Viterbi that searches for

the best scoring path. While searching, we intersect with the surface level models and

create k-best lists of derivation paths in the hypergraph, thus optimizing what to say

and how to say at the same time. We describe the representation of the grammar using

the hypergraph framework in detail in Section 4.3.3.

3.2 Datasets

We used our system to generate soccer commentaries, weather forecasts, spontaneous

utterances relevant to the air travel domain and troubleshooting guides for an operating

system. Our aim is to assess how our approach performs under databases of varying

size and vocabulary. The four domains cover different registers; they range from writ-

ten text to spoken dialogue and instructional manuals. They also differ with respect

to the size of generated documents, ranging from one sentence to several. Table 3.1

presents corpus statistics across all four domains employed in this thesis. In the follow-

ing we describe each dataset individually. Each corpus is broken down into a training

set, a development set and a test set, unless noted otherwise. Each scenario consists of

a database chunk and its corresponding text; we also obtain either manually or auto-

matically the alignments between the records and the parts of the text that they refer to

(see Sections 3.2.1-3.2.4). The latter are only used for evaluation purposes during the
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Dataset docs sents sents/doc |doc| |sent| 1-grams |r.t| |ri| |ri|/doc

ROBOCUP 1,539 1,539 1 5.7 5.7 244 9 2.41 2.4

WEATHERGOV 29,528 81,337 3.25 29.3 9.29 345 12 36 5.8

ATIS 4,962 4,962 1 11.2 11.2 927 19 3.79 3.79

WINHELP 128 432 4.3 51.92 11.91 629 13 9.2 9.2

Table 3.1: Corpus statistics for ROBOCUP, WEATHERGOV, ATIS and WINHELP.

The columns (starting from the second), correspond to the total number of documents

(docs), total number of sentences (sents), average number of sentences per document

(sents/docs), average number of words per document (|doc|), average number of words

per sentence (|sent|), number of unique words or unigrams (1-grams), average num-

ber of record types (|r.t|), average number of records per scenario (|ri|), and average

number of record alignments per scenario (|ri|/doc), respectively.

training of our models. We give examples of scenarios along with their alignments for

each domain in Appendix A.

3.2.1 ROBOCUP Dataset

A RoboCup game is a soccer match between two teams of autonomous robots, such

as the NAO humanoid robots (Gouaillier et al., 2008). We used the corpus of Chen

and Mooney (2008) which contains manually edited transcriptions of the commen-

taries from the 2001–2004 RoboCup game finals (henceforth ROBOCUP). These were

created by the commentators during the course of a game. The corpus also contains a

semantic representation for some of the sportscasting comments. Chen and Mooney

(2008) developed a symbolic representation of game events, most of which involve

actions with the ball, such as kicking and passing. The events were automatically ex-

tracted from the game logs using a rule-based system, and were represented as atomic

formulas in predicate logic. The lexicon and context-free rules for parsing the logical

formulas were manually crafted for the specific domain.

We automatically converted the logical formulas into the schema of database records

described in the previous section. The process is as follows (see example 3.3a for an

illustration)2:

• The function name becomes the record type,

2The resulting dataset is available from http://homepages.inf.ed.ac.uk/s0793019/index.
php?page=resources
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pass ( purple10 :from , purple11 :to )

Pass
From To

purple10 purple11

Pass

kick ( pink7 :from )

Kick
From
pink7

(a) Automatic conversion process: The function pass corresponds to the record type, the argument

types align with the fields and the argument values become field values.

Bad Pass

From To

purple10 pink7

Ball Stopped

No Fields

Turn Over

From To

purple10 pink7

Kick

From

purple10

purple10 makes a bad pass and

was picked off by pink7

(b) Example scenario. Notice that only one record aligns with the corresponding sentence.

Figure 3.3: ROBOCUP: Automatic conversion process from formal language represen-

tation to database schema (a), and example scenario (b).

• the argument types of the function correspond to the fields of the record type (the

maximum arity in the dataset is 2),

• and the argument values are assigned to the field values.

Each scenario consists of a single line of commentary and the accompanying events,

which were extracted automatically from the original logs based on the following

heuristic: let the events occuring within a time-window of 5 seconds of the times-

tamp of the comment, be the possible candidates. Note that only one of those actually

corresponds to the comment line. This process generated the final dataset, which con-

sists of 1,539 scenarios containing database records with the corresponding semantic

representation and the supporting commentaries. Figure 3.3b shows an example sce-

nario.

Each scenario in this dataset contains on average |d|= 2.4 records, with categorical

values only and is paired with a short sentence (5.7 words). This domain has a small

vocabulary (244 words) and simple syntax (e.g., a transitive verb with its subject and
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object). There is a single record for each scenario that matches the whole sentence of

the corresponding comment. Therefore the task of our generator reduces to selecting

the correct record out of the set of candidate records present in the same 5-second time-

window, hence the content selection is rather trivial. Then the generator lexicalises it

by performing surface realisation. Note that the gold-standard records in this dataset

were manually aligned to their corresponding sentences (Chen and Mooney, 2008).

Given the relatively small size of this dataset, we performed cross-validation following

previous work (Chen and Mooney, 2008; Angeli et al., 2010). We trained our system

on three ROBOCUP games and tested on the fourth, averaging over the four train/test

splits.

3.2.2 WEATHERGOV Dataset

The second domain we deal with is weather forecasts; we used the dataset of Liang

et al. (2009). Each scenario contains a set of database records specific to the local

weather forecast and a short text with the accompanying weather report. The authors

collected local forecasts for 3,753 major US cities, with a population of at least 10,000,

over three days (7–9 February 2009) from www.weather.gov. For each city and date,

they created two scenarios, corresponding to the day (06:00-21:00) and night (17:00-

06:00(+1 day)) forecast, respectively3. The original forecasts contain hour-by-hour

predictions of measurements of temperature, wind speed, wind temperature, sky cover,

rain chance and so on. In order to avoid sparsity issues, the authors aggregated mea-

surements over specific time intervals, e.g. the minimum, maximum and mean wind

speed from 06:00 to 21:00.

The resulting dataset consists of 29,528 weather scenarios; the vocabulary in this

domain (henceforth WEATHERGOV) is comparable to ROBOCUP (345 words), how-

ever, the texts are longer, with 29.3 words per document, and are more varied. On

average, each forecast has 3.25 sentences and the content selection problem is more

challenging; only 5.8 out of the 36 records per scenario (with 12 record types in total)

are mentioned in the text which roughly corresponds to 1.4 records per sentence. The

fields of the record types are either of categorical or integer type. Finally, the authors

annotated the data at the record level automatically using hand-crafted heuristics, in

order to identify which records match which parts of the text. To achieve that, they

split the text by punctuation into lines and labelled each line with the records the line

3The resulting dataset is available from http://cs.stanford.edu/˜pliang/data/
weather-data.zip
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Wind Chill

Time Min Mean Max

06-21 0 0 0

Temperature

Time Min Mean Max

06-21 52 61 70

Wind Speed

Time Min Mean Max

06-21 11 22 29

Wind Direction

Time Mode

06-21 S

Gust

Time Min Mean Max

06-21 0 20 39

Precipitation Potential

Time Min Mean Max

06-21 26 81 100

Sky Cover

Time Percent (%)

06-21 75-100

06-09 75-100

06-13 50-75

09-21 75-100

13-21 75-100

Rain Chance

Time Mode

06-21 Def

06-09 Lkly

06-13 Def

09-21 Def

13-21 Def

Snow Chance

Time Mode

06-21 –

06-09 –

06-13 –

09-21 –

13-21 –

Thunder Chance

Time Mode

06-21 Def

06-09 Lkly

06-13 Chc

09-21 Def

13-21 Def

Freezing Rain Chance

Time Mode

06-21 –

06-09 –

06-13 –

09-21 –

13-21 –

Sleet Chance

Time Mode

06-21 –

06-09 –

06-13 –

09-21 –

13-21 –

Showers and thunderstorms.

High near 70.

Cloudy,

with a south wind around 20mph,

with gusts as high as 40 mph.

Chance of precipitation is 100%.

Figure 3.4: WEATHERGOV example scenario with automatically extracted gold stan-

dard alignments. Notice that a record type may have many records, as in the case of

Sky Cover, Rain Chance, etc.



3.2. Datasets 35

refers to. The heuristics performed mostly anchor matching between database records

and words in the text (e.g., the value Lkly of the record Rain Chance, matches with

the string ‘rain likely’ in the text). An example scenario is given in Figure 3.4. In our

experiments we used 25,000 scenarios from WEATHERGOV for training, 1,000 sce-

narios for development and 3,528 scenarios for testing. This is the same partition used

in Angeli et al. (2010).

3.2.3 ATIS Dataset

For the air travel domain we created a corpus based on the ATIS dataset (Dahl et al.,

1994). The original corpus contains a total of 5,426 transcriptions of spontaneous ut-

terances of users interacting with a hypothetical online flight booking system, along

with the corresponding SQL queries associated with their interaction/requests. Instead

of converting this version of the corpus to our database schema, we used the dataset

introduced in Zettlemoyer and Collins (2007). The reason is that the original corpus

contains user utterances of single dialogue turns which would result in trivial scenar-

ios. Instead Zettlemoyer and Collins (2007) concatenate all user utterances referring

to the same dialogue act, (e.g., book a flight), thus yielding more complex scenarios

with longer sentences. The scenarios in the latter dataset consist of the new concate-

nated utterances and their formal meaning representation in lambda calculus, which

we converted to the database scheme as follows (see Figure 3.5 for an illustration of

the process)4:

1. First we identify records, one per variable (e.g., x); the record type is set ac-

cording to the type of the variable. We usually determine this from functions

with one argument, which primarily play the role of formally assigning a type

to the variable. In the example x is of type flight, since function flight(x)

takes arguments of type flight, x : f l. Variables are introduced by the following

expressions: lambda, exists, argmax, argmin, min, max, sum, the and count.

2. Then we identify one or more special Search record types. These automatically

get assigned a type field which takes as a value one of the above expressions

(e.g., argmin, max, lambda becomes query, etc.). They also get a field what,

which is a reference to the record type they apply to. In the example, the value

4The resulting dataset is available from http://homepages.inf.ed.ac.uk/s0793019/index.
php?page=resources
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λx. f light(x) ∧ f rom(x,denver) ∧
to(x,boston) ∧ day number departure(x,9) ∧

month departure(x,august)∧ < (arrival time(x),1600)

Flight

from to

denver boston

Search

type what

query flight

Flight

from to

denver boston

Search

type what

query flight

Day Number

number dep/ar

9 departure

Month

month dep/ar

august departure

Flight

from to

denver boston

Search

type what

query flight

Day Number

number dep/ar

9 departure

Month

month dep/ar

august departure

Condition

arg1 arg2 type

arrival time 1600 <

f rom(x,denver)

to(x,boston)

day number departure(x,9)

month departure(x,august)

Steps 3. and 4.

f light(x)

λx and x : f l

Steps 1. and 2.

< (arrival time(x),1600)

Step 5.

Give me the flights leaving Denver August ninth coming back to Boston before 4pm.

Figure 3.5: ATIS: Automatic conversion process from lambda calculus expressions to

the database schema. For a detailed description of how this is achieved we refer the

reader to the main text.
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for the Search record of the type field, is query, and the value of the what field,

is flight, since it refers to the variable x which has type flight.

3. Next we fill records with their fields and values from functions with 2 arguments,

where the first argument matches with the record’s type (the exception to this

rule are functions with composite names; see step below). The field name comes

from the name of the function and its value from the second argument, which is

a constant. In the example, from(x, denver) is used to fill the record flight,

since the type of the first argument is also flight. The name of the function

becomes the field name, i.e., from and the second argument is set as its value,

i.e., denver.

4. Note that some functions have names such as month departure, month arrival,

day number arrival, day number departure and so on. In order to reduce

the resulting number of record types, we heuristically aggregate record types

which embed common information (i.e., departure, or arrival) to a special field.

In the example, the function day number departure becomes the value depar-

ture of the field dep/ar for the record Day.

5. Then we determine special condition record types, that correspond to the fol-

lowing special functions: <, >, not and or. Condition records have a field type

which takes a value according to the name of the function. It also has two extra

fields arg1 and arg2 that correspond to the function’s arguments. In the ex-

ample, the function <(arrival time(x), 1600) is converted to a Condition
record with values arrival time, 1600 and < for the fields arg1, arg2 and type,

respectively.

In contrast to the previous datasets, ATIS has a much richer vocabulary (927 words);

each scenario corresponds to a single sentence (average length is 11.2 words) with 2.65

out of 19 total record types mentioned on average. All the fields are of categorical type.

Note that the original lambda expressions were created based on the utterance, and thus

contain all the necessary information conveyed in the meaning of the text. As a result,

all of the converted records in each scenario are mentioned in the corresponding text.

Following Zettlemoyer and Collins (2007), we trained on 4,962 scenarios and tested

on ATIS NOV93 which contains 448 examples.
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Right-click the internet explorer icon on your desktop, and then click properties.

envCmd:right click objName:internet explorer type:item

envCmd:left click objName:properties type:menu

On the security tab, click the internet icon, and then click custom level.

envCmd:left click objName:security type:tab

envCmd:left click objName:internet type:item

envCmd:left click objName:custom level type:button

Change the run activex option to either enable or prompt.

envCmd:left click objName:run activex type:treeItem

envCmd:left click objName:enable type:treeItem

envCmd:left click objName:custom level type:button

Click ok.

envCmd:left click objName:ok type:button

navigate-desktop

envCmd objName type

right click internet explorer item

navigate-desktop-target

envCmd objName type

left click properties menu

navigate-contextMenu

envCmd objName type

left click security tab

left click internet item

navigate-contextMenu-target

envCmd objName type

left click custom level button

action-contextMenu

envCmd objName type typeInto

left click run activex treeItem –

left click enable treeItem –

exit-contextMenu

envCmd objName type

left click ok button

Right-click the internet explorer icon on your desktop, and then click properties.

On the security tab, click the internet icon, and then click custom level.

Change the run activex controls and plugins option to either enable or prompt.

Click ok.

Figure 3.6: WINHELP: Example scenario from the original log of the dataset of Brana-

van et al. (2009) and the resulting database schema. For a detailed description of the

conversion, we refer the reader to the main text.
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3.2.4 WINHELP Dataset

For the last domain (henceforth WINHELP) we created a dataset based on the trou-

bleshooting guide corpus of Branavan et al. (2009). The authors collected articles

from Microsoft’s Help and Support website5 which contain step-by-step instructions

on how to perform tasks on the Windows 2000 operating system. In order to acquire

some form of semantic representation, they implemented a capturing mechanism on

a sandbox virtual machine running the Windows operating system, and manually per-

formed the steps in each troubleshooting guide. This translated into navigating through

a set of visible user interface (UI) objects, and object properties such as label, location,

and parent window. It also included performing certain actions, i.e., left-click, right-

click, double-click, and type-into (e.g., typing into a text box).

The acquired logs for each document is split into sentences and each sentence is

accompanied with the set of actions required to complete the step described therein.

Each action consists of an environment command, envCmd, the name of the object the

command was operated on, objName, and the type of the object, objType. The top of

Figure 3.6 gives an example of the original format.

For our purpose, we chose first to concatenate all sentences and accompanying

actions into a complete document. Each action in the log is considered a separate

record in our database. Then we manually annotated each action as follows:

• We assign it to a different record type, given the corresponding text and ob-

ject involved. The record types are grouped into three large categories, namely

navigate-, action-contextMenu and exit-contextMenu. The last two categories

trivially correspond to actions, which involve completing the ultimate goal of the

whole document, and quitting or exiting context menus, windows or programs,

respectively.

• The navigate- category contains the main bulk of types, which describe user

actions in order to access different menus and windows, before achieving the ul-

timate goal via an action-contextMenu record as described above. The possible

types are -desktop, -start, -contextMenu, -window, -program, and -location.

• The navigate- category is further subdivided into simple navigation types

(e.g., navigate-contextMenu) and -target types (e.g., navigate-contextMenu-
target), depending on whether the action is a part of a sequence of intermediate

5support.microsoft.com
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actions, or the ultimate action of the sequence which results in a change of the

context in the UI environment. Usually, the former types involve clicking, or

pointing the mouse over a window, or a button, whereas the latter is signified

by a double-click on a button or an icon. In the example of Figure 3.6, the

third and fourth records have a simple navigation type, whereas the sixth is of

-target type. This is easily justified by the corresponding text which reads ‘On

the security tab, click the internet icon, and then click custom level.’; pointing on

the security tab and clicking on the internet icon are intermediate actions before

the goal action, which is to double-click on the custom level button.

• Finally, the atrribute-value pairs of the original format, i.e., envCmd, objName

and objType, become fields for our new record types; the first and third are of

categorical type whereas the second is string-typed. The record type action-
contextMenu has an extra string field called type-into.

The resulting dataset6 consists of 128 scenarios. The final database has 13 record

types. Each scenario has 9.2 records and each document 51.92 words with 4.3 sen-

tences. The vocabulary is 629 words. For our experiments we performed 10-fold

cross-validation on the entire dataset for training and testing. Compared to the other

three datasets, WINHELP documents are longer with a larger vocabulary. More im-

portantly, due to the nature of the domain, i.e., giving instructions, content selection is

critical both in terms of what to say but also in what order.

3.3 Evaluation Methodology

In this work we address two different tasks, namely learning the alignments between

the database and the text, and most importantly, generating text given the database

only. In order to measure the quality of our systems we need ways to evaluate each

task separately. In the following we will describe the methodology and metrics used

to evaluate the alignments produced during the training of our grammar, and when

generating the output text.

3.3.1 Alignment Generation Evaluation

As we will explain in more detail in Sections 4.1-4.2, an important component of the

generation process is the alignment of database records to text. Although we are pri-
6Available from http://homepages.inf.ed.ac.uk/ikonstas/index.php?page=resources
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marily interested in the output of our generator, the quality of the alignments unavoid-

ably impacts the quality of the generated output, hence the overall performance of our

system as well. During training, as shown at the top of Figure 3.2, we observe both

the database records d and the text w, and try to infer the hidden correspondences or

alignments between them (we describe this procedure in more detail in Section 4.4.1).

Assuming gold-standard alignments between d and w at the record level, we can mea-

sure the quality of automatically produced ones using standard precision, recall and F1

measure of records on the training set. Note that our model captures correspondences

at a higher level of granularity, i.e., between records, fields and values, and words.

However, it is prohibitively costly to obtain so detailed annotation, hence we adhere to

measuring only record alignments. The procedure follows Liang et al. (2009).

For each scenario we run a Viterbi search given the input d, the text w and the

trained grammar, and produce the best derivation tree. Then we extract from the tree a

set of line-record pairs by aligning a line to a record ri, if the span of the phrase seg-

ment corresponding to ri, overlaps the line. In ROBOCUP and ATIS we consider the

whole comment or utterance as a line, respectively. For WINHELP we split lines into

sentences as they were segmented in the original dataset. Finally, for WEATHERGOV

the text is split into lines at punctuation (if there are any), rather than at phrase seg-

ments, since they are easier to obtain automatically in a consistent way. We provide

the definition of Precision, Recall and F1 for reference:

Precision =
Correctly Aligned Records

Correctly Aligned Records+Extra Aligned Records
(3.1)

Recall =
Correctly Aligned Records

Correctly Aligned Records+Missing Records
(3.2)

F1 = 2 · Precision ·Recall
Precision+Recall

(3.3)

Figure 3.7 gives an example of gold-standard and generated record alignments; in red

we highlight the records mismatches. In order to calculate precision we divide the

number of correctly aligned records (4) by the sum of correctly aligned plus extra

aligned records (5), which equals to 0.8. Recall and F1 are computed accordingly(4
7 = 0.57

)
, and

(
2 · 0.8·0.57

0.8+0.57 = 0.67
)
, respectively.

3.3.2 Generation Evaluation

Deciding whether a text is of good quality is a difficult and often too subjective task

to be handled automatically. However, there are some widely used automatic metrics
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Gold:
precipPotential1 rainChance1 thunderChance1

A 20 percent chance of showers and thunderstorms .

skyCover1

Cloudy,

temperature1

with a low around 53 .

windDir1 windSpeed1

south wind between 10 and 20 mph .

Model:
rainChance4

A 20 percent chance of showers and thunderstorms .

skyCover1

Cloudy,

temperature1

with a low around 53 .

windDir1

south wind between

windSpeed1

10 and 20 mph .

Figure 3.7: Gold-standard and generated record alignments. In red we highlight the

mismatched records.

such as BLEU score (Papineni et al., 2002) which assess the quality of a generated text

compared to (usually a human-authored) reference, and have been shown to correlate

well with human judges. Many data-driven approaches advocate its use, such as Belz

(2008); Belz and Reiter (2006); Angeli et al. (2010), inter alia. The use of automatic

metrics can also be helpful while developing an algorithm, or during parameter tuning.

We therefore evaluate the output of our system in two ways: using widely accepted

automatic measures of surface level output, and by eliciting human judgement studies.

The first metric we use is the BLEU score (Papineni et al., 2002) with the human-

written text as reference. The main component of BLEU is n-gram precision, i.e., the

proportion of the matched n-grams in the gold-standard text out of the total number

of n-grams in the evaluated generated text. Precision is calculated separately for each

n-gram order, and the precisions are combined via a geometric averaging and a brevity

penalty that penalises shorter or longer generated output compared to the original. We

take into account up to 4-grams (hence the metric is referred to as BLEU-4), which is

standard practice in the Machine Translation community. More formally:

BLEU = BP · exp

(
N

∑
n=1

wnlogpn

)
(3.4)

where BP is a brevity penalty function following an exponential distribution, wn are the

weights for each n-gram set to follow a geometric distribution, and pn is the modified

n-gram precision. We implemented our own version of the BLEU score metric.

The second metric we use is the METEOR score (Banerjee and Lavie, 2005; Denkowski

and Lavie, 2011), which has been shown to correlate better with human judgements at

the sentence level. In contrast with BLEU, METEOR computes unigram matches be-

tween the gold and the generated text based on either the surface form, the stemmed
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form or even the meaning, i.e., if they are synonyms according to the WordNet (Miller,

1995) database. METEOR is the combination of unigram precision, unigram recall

(not present in BLEU), and a metric of fragmentation, which directly captures the de-

gree of matching words that are well-ordered (this replaces the fixed brevity penalty

of BLEU). We omit the formal description of the metric from here and refer the in-

terested reader to Banerjee and Lavie (2005) for more details. We used the existing

implementation of METEOR obtained from www.cs.cmu.edu/˜alavie/METEOR/.

Finally, we evaluate the generated text via judgement elicitation studies, in which

participants are presented with a scenario and its corresponding verbalization and were

asked to rate the latter along two dimensions: fluency (is the text grammatical and

overall understandable?) and semantic correctness (does the meaning conveyed by the

text correspond to the database input?). Subjects in our experiments use a five point

rating scale where a high number indicates better performance. We conducted our

studies over the Internet using Amazon Mechanical Turk (AMT)7, and all participants

were self reported native English speakers.

AMT is an online labour market where workers are paid small amounts of money

to complete small tasks. There are two types of users: ones who submit Human Intel-

ligence Tasks (or HITs) for annotation and others who actually annotate the submitted

task; both are required to have an Amazon account, but appear as anonymous in the

platform. The Requesters define the number of unique annotations per HIT they per-

mit, the maximum time limit they allow for each Worker to annotate the task, and the

total payment per task. AMT also allows a Requester to restrict which Workers are

allowed to annotate a task by requiring that all Workers have a particular set of qual-

ifications (e.g., a minimum percentage of previously accepted submissions). Finally,

when a HIT is completed, the Requester is given the option to approve the work of

individual Workers.

3.4 Summary

In this chapter we defined our generation task, described the input to our model and

highlighted the important parts of our system architecture. We then presented an

overview of the four domains we experimented on, and discussed each database schema

we used. Finally, we summarised the evaluation methodology we adopted to assess the

performance of our systems, and the specific metrics we used.

7www.mturk.com





Chapter 4

Joint Model of Generation

In this chapter we propose a model for performing jointly content selection, rudimen-

tary sentence planning (only lexicalisation) and surface realisation. We begin by pre-

senting in detail an existing model for content selection from database input (Liang

et al., 2009), which we then extend and recast as a PCFG grammar. Next, we demon-

strate several ways to efficiently parse with the grammar in order to generate fluent

text, and conclude with an extensive evaluation on the four domains presented in the

previous chapter.

4.1 A model of inducing alignments

Liang et al. (2009) present a generative semi-hidden Markov model that learns the cor-

respondence between a world state and an unsegmented string of text. As in our case,

the world state is represented by a set of database records, with their associated fields

and values. Their model is defined by a generative process that can be summarized in

three steps:

1. Record choice. Choose a sequence of records r to describe. Consecutive records

are selected on the basis of their types.

2. Field choice. For each record ri emit a sequence of fields ri.f.

3. Word choice. For each chosen field ri. fk generate a number of words c, where

c > 0 is chosen uniformly.

By concatenating the sequences of word choices for each field, we retrieve the ob-

served text w. Note that the segmentation of w into sequences of cik words is latent.

45
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d

rir1 . . . r|r|. . .

r1. f1 . . . ri. f1 . . . ri. f| f | r|r|. f| f |. . .

w1 . . . w w . . . w w . . . w w . . . wN

Figure 4.1: Graphical model representation of the generative alignment model of Liang

et al. (2009). Shaded nodes represent observed variables (i.e., the database d and

the collocated text w), unshaded nodes indicate latent variables. Arrows indicate condi-

tional dependencies between variables. Starting from the database d, the model emits

a sequence of records; then for each record it emits a sequence of fields, specific to

the type of the particular record. Finally, for each record it uniformly selects a number c

and emits words w1 . . .wc.
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The process described above is implemented as a hierarchy of Markov chains which

correspond to records, fields, and values of the input database. As can be seen in Fig-

ure 4.1 the choice of records, is captured by a Markov chain of records conditioned

on record types; given a record type, then a record is chosen uniformly from the set

of records with this type. In this way, their model essentially captures rudimentary

notions of local coherence and salience, respectively. More formally:

p(r |d) =
|r|

∏
i

p(ri.t |ri−1.t)
1

|s(ri.t)|
(4.1)

where s(t) is defined as a function that returns the set of records with type t: s = {r ∈
d : r.t = t}, and r0.t is the START record type. Liang et al. (2009) also include a special

NULL record type, which accounts for words that do not particularly align with any

record present in the database. Field choice is modelled analogously as a Markov chain

of fields for a given record choice ri of type t:

p(f |ri.t) =
|ri.f|

∏
k

p(ri. fk |ri. fk−1) (4.2)

They also implement special START and STOP fields to model transitions at the

boundaries of the corresponding phrase. Finally, for a chosen record ri, a field fk

and a uniformly chosen number c, with 0 < c < N, they emit words independently

given the field value and type. Note that since their model always observes the words,

they do not need a more powerful representation at the surface level:

p(w |ri,ri. fk,ri. fk.t,cik) =
|w|

∏
j

p(w j |ri.t,ri. fk.v) (4.3)

Their model supports three different types of fields, namely string, categorical and in-

teger. For each of those they adopt a specific generation strategy at the word level.

For string-typed fields, they emit a single word from the (possibly) multi-word value,

chosen uniformly. For categorical fields, they maintain a separate multinomial distri-

bution of words for each field value. Finally, for integer fields, they wish to capture

the intuition that a numeric quantity in the database can be rendered in the text as a

word which is possibly some other numerical value due to stylistic factors. So they

allow several ways of generating a word given a field value. These include generating

the exact value, rounding up or rounding down to a multiple of 5, rounding off to the

closest multiple of 5, and adding or subtracting some unexplained noise ε+ or ε−, re-

spectively. Each noise is modelled as a geometric distribution, the parameters of which

are trained given the value ri. fk.v.
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Records: skyCover1 k k k

Fields: percent=0-25 N time=6am-9pm min=9 max=21 mode=S N N mean=20
Text: cloudy , withg temps between 10gand 20 degrees . southg windg aroundg 20 mph .

temperature1 windDir1 windSpeed1

Figure 4.2: Example of alignment output for the model of Liang et al. (2009) on the

weather domain.

An example of the model’s output for the weather domain is shown in Figure 4.2.

The top row contains the database records selected by the model (subscripts correspond

to record tokens; e.g., temperature1 refers to the first record of type temperature in

Figure 4.3). The second row contains the selected fields for each record with their

associated values. The special field NULL aligns with words that do not directly refer to

the values of the database records, such as with, wind and around. Finally, the last row

shows the segmentation and alignment of the original text w produced by the model.

As it stands, Liang et al.’s (2009) model generates an alignment between sequences

of words and facts in a database, falling short of creating a meaningful sentence or doc-

ument. Kim and Mooney (2010) address this problem by interfacing the alignments

with WASP−1 (Wong and Mooney, 2007). The latter is a publicly available generation

system which takes an alignment as input and finds the most likely string using the

widely popular noisy-channel model. Angeli et al. (2010) propose a model different in

spirit which nevertheless also operates over the alignments of Liang et al. Using a tem-

plate extraction method they post-process the alignments in order to obtain a sequence

of records, fields, and words spanned by the chosen records and fields. The generation

process is then modelled as a series of local decisions, arranged hierarchically and each

trained discriminatively. They first choose which records to talk about, then a subset

of fields for each record, and finally a suitable template to render the chosen content.

We do not treat Liang et al. (2009) as a black box in order to obtain alignments.

Rather, we demonstrate how generation can be seamlessly integrated in their semi-

hidden Markov model by re-interpreting it as CFG rewrite rules and providing an ap-

propriate decoding algorithm. Our model simultaneously learns which records and

fields to talk about, which textual units they correspond to, and how to creatively rear-

range them into a coherent document.
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4.2 Grammar Definition

As mentioned earlier, we recast the model of Liang et al. (2009) as a series of CFG

rewrite rules, corresponding to the first two layers of the HMMs in Figure 4.1. We

also include a set of grammar rules that emit chains of words, rather than words in

isolation. This can be viewed as an additional HMM over words for each field in the

original model. The modification is important for generation; since we only observe

the set of database records d, we need a better informed model during decoding that

captures word-to-word dependencies more directly. We should also point out that our

PCFG does not extend the underlying expressivity of the model presented in Liang

et al. (2009), namely it also describes a regular language.

Our grammar GGEN is defined in Table 4.1 (rules (1)–(10)) and contains two types

of rules. GCS rules perform content selection, whereas GSURF rules perform surface

realization. We do not explicitly model the process of sentence planning, as described

in Section 2.1, nor do we deal with the more sophisticated aspects of referring expres-

sion generation and aggregation. However, we indirectly model the lexicalisation of

database values of fields, simultaneously with surface realisation. All types of rules

are purely syntactic (describing the intuitive relationship between records, records and

fields, fields and corresponding words), and could apply to any database with similar

structure irrespectively of the semantics of the domain. Rule weights are governed by

an underlying multinomial distribution and are shown in square brackets. We estimate

rule weights in an unsupervised fashion using EM (see Section 4.4.1). Non-terminal

symbols are in capitals and denote intermediate states; the terminal symbol α corre-

sponds to a single word from the set of all words seen in the training set, and gen( f .v)

is a function for generating integer numbers given the value of a field f . All non-

terminals, save the start symbol S, have one or more features (shown in parentheses)

which act as constraints, similar to number and gender agreement constraints in aug-

mented syntactic rules. Figure 4.4 shows two derivation trees licensed by our grammar

for the sentence “Cloudy, with temperatures between 10 and 20 degrees.” (see the

example in Figure 4.3).

The first rule in the grammar denotes the expansion from the start symbol S to

record R, which has the special ‘start’ record type (hence the notation R(start)). Rule (2)

defines a chain between two consecutive records, i.e., going from record ri to r j.

Here, FS(r j,start) represents the set of fields of record r j following record R(ri). For

example, in Figure 4.4a, the top branching rule R(start)→ FS(sc2,start)R(sc2.t) (sc
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GCS 1. S→ R(start) [Pr = 1]

2. R(ri.t)→ FS(r j,start) R(r j.t)
[
P(r j.t |ri.t) · 1

|s(ri.t)|

]
3. R(ri.t)→ FS(r j,start)

[
P(r j.t |ri.t) · 1

|s(ri.t)|

]
4. FS(r,r. fi)→ F(r,r. f j) FS(r,r. f j) [P( f j | fi)]

5. FS(r,r. fi)→ F(r,r. f j) [P( f j | fi)]

6. F(r,r. f )→W(r,r. f ) F(r,r. f ) [P(w |w−1,r,r. f )]

7. F(r,r. f )→W(r,r. f ) [P(w |w−1,r,r. f )]

GSURF 8. W(r,r. f )→ α [P(α |r,r. f , f .t, f .v, f .t = {cat,null})]

9. W(r,r. f )→ gen( f .v) [P(gen( f .v).mode |r,r. f , f .t = int)·
P( f .v |gen( f .v).mode)]

10. W(r,r. f )→ gen str( f .v, i) [Pr = 1]

Table 4.1: Grammar rules for GGEN and their weights shown in square brackets.

stands for Cloudy Sky Cover) can be interpreted as follows. Given we are at the

beginning of the document, hence the record R(start), we will talk about the part of

the forecast that refers to Cloud Sky Cover, i.e., emit the set of fields spanned by the

non-terminal FS(sc2,start). The field start in FS acts as a special boundary between

consecutive records. Note that in the input database of example 4.3, there are five

records of type Cloud Sky Cover. Given that the value of the Percent (%) field of the

second record is 50-75, it is more likely to lexicalise to the phrase “Cloudy ,”. In a

different scenario, if the equivalent phrase was “Mostly sunny ,” the first record with

value 25-50 would have been more appropriate. Rule R(sc2.t)→ FS(t1,start)R(t1.t)

(t stands for Temperature) is interpreted similarly: once we talk about the sky cover-

age of the forecast we will move on to describe the temperature outlook, via the field

set spanned by the non-terminal FS(t1,start) (see the second sub-tree in Figure 4.4a).

The weight of this rule is the bigram probability of two records conditioned on their

record type, multiplied with the normalization factor 1
|s(ri.t)| , where s(t) is a function

that returns the set of records with type t (Liang et al., 2009). We have also defined a
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Input:

Temperature

Time Min Mean Max

06-21 9 15 21

Wind Speed

Time Min Mean Max

06-21 15 20 30

Cloud Sky Cover

Time Percent (%)

06-09 25-50

09-12 50-75

Wind Direction

Time Mode

06-21 S

Text: Cloudy, with temperatures between 10 and 20 degrees.

South wind around 20 mph.

Figure 4.3: Example scenario on the WEATHERGOV domain.

null record type i.e., a record that has no fields and acts as a smoother for words that

may not correspond to a particular record. Rule (3) is simply an escape rule, so that

the parsing process (on the record level) can finish.

Rule (4) is the equivalent of rule (2) at the field level, i.e., it describes the chaining

of two consecutive fields fi and f j. Non-terminal F(r,r. f ) refers to field f of record r.

For example, in the tree of Figure 4.4a, the rule FS(t1,min)→ F(t1,max) FS(t1,max)

specifies that we should talk about the field max of record t1 (i.e., temperature record),

after talking about the field min. Analogously to the record level, we have also included

a special null field type for the emission of words that do not correspond to a specific

record field (e.g., see the emission of the two last tokens “degrees .” in the end of the

phrase in the derivation tree). Rule (6) defines the expansion of field F to a sequence of

(binarized) words W, with a weight equal to the bigram probability of the current word

given the previous word, the current record, and field. See the consecutive application

of this rule on the derivation tree in the emission of the phrase “with temperatures

between 10”.

Rules (8)-(10) are responsible for lexicalisation and surface generation; they define

the emission of words and integers from W , given a field type and its value, and can

thus be regarded as the lexical rules of our grammar (see the pre-terminal expansions

at the derivation tree of Figure 4.4a for examples). Rule (8) emits a single word from

the vocabulary of the training set. Its weight defines a multinomial distribution over all

seen words, for every value of field f , given that the field type is categorical (denoted

as cat in the grammar) or the special null field. Rule (9) is identical but for fields whose
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S

R(start)

R(sc2.t)

R(t1.t)

...

FS(t1,start)

FS(t1,min)

FS(t1,max)

F(t1,∅)

F(t1,∅)

W(t1,∅)

.

W(t1,∅)

degrees

F(t1,max)

F(t1,max)

W(t1,max)

20

W(t1,max)

and

F(t1,min)

F(t1,min)

F(t1,min)

F(t1,min)

W(t1,min)

10

W(t1,min)

between

W(t1,min)

temperatures

W(t1,min)

with

FS(sc2,start)

FS(sc2,%)

F(sc2,∅)

W(sc2,∅)

,

F(sc2,%)

W(sc2,%)

Cloudy

(a)

S

R(start)
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Figure 4.4: Two derivation trees using the grammar in Table 4.1 for the sentence

“Cloudy, with temperatures between 10 and 20 degrees.” of the scenario in Figure 4.3.

We use sc as a shorthand for the record type Cloudy Sky Cover, and t for Temper-

ature. Subscripts refer to record tokens (e.g., sc2 is the second Cloudy Sky Cover

record, t1 is the first Temperature record, and so on).
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type is integer. Function gen( f .v) generates an integer number given the field value,

using either of the following six ways (Liang et al., 2009): identical to the field value,

rounding up or rounding down to a multiple of 5, rounding off to the closest multiple of

5 and finally adding or subtracting some unexplained noise ε+ or ε− respectively. Each

noise is modeled as a geometric distribution, the parameters of which are trained given

the value f .v. The weight is a multinomial over the six integer generation function

choices, given the record field f , times P( f .v |gen( f .v).mode), which is set to the

geometric distribution of noise ε+ and ε−, or to 1 otherwise. Finally, rule (10) adds a

simple verbatim lexicalisation for string values. We define gen str as a function that

takes the value of a string-typed field f .v, and the position i in the string, and generates

the corresponding word at that position:

gen str( f .v, i) : V →V, f .v ∈V

where V is the set of words for the fields of type string. Taking an example from the

WINHELP domain, gen str(users and passwords, 3) = passwords. The weight of this

rule is set to 1.

4.3 Generation

So far we have defined a probabilistic grammar which captures the structure of a

database d with records and fields as intermediate non-terminals, and words w (from

the associated text) as terminals. The mapping between d and w is unknown and thus

the intermediate multinomial distributions (see the rule weights of GGEN in Table 4.1)

define a hidden correspondence h between records, fields and their values. Given an

input scenario from a database d we can simply generate its corresponding text using

the grammar in Table 4.1. In analogy to parsing, this amounts to finding the most likely

derivation, i.e., sequence of rewrite rules for a given input. Note that there is a subtle

difference between syntactic parsing and generation. In the former case, we observe a

string of words and our goal is to find the most probable syntactic structure, i.e., hidden

correspondence ĥ. In generation, however, the string is not observed; instead, we must

thus find the best text ĝ, by maximizing both over h and g1, where g = g1 . . .gN is a

sequence of words licensed by GCS and GSURF . More formally:

g = f
(

argmax
g,h

P
(
(ĝ, ĥ)

))
(4.4)

1We use w to denote the gold-standard text and g to refer to the string of words produced by our
generator.
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where f is a function that takes as input a derivation tree (g,h) and returns g. We

use a modified version of the CYK parser (Kasami, 1965; Younger, 1967) to find ĝ.

Optimizing over both h and g is intractable, so we approximate f by pruning the search

space as we explain in Section 4.3.2. An additional complication is that since we do

not a priori know the length of our output text, we must somehow approximate or guess

it. We defer discussion on how we achieve this to Section 4.4.3.

In the following, we describe our decoder as a deductive proof system (Shieber

et al., 1995). We first present a basic adaptation of the CYK algorithm to our task

(Section 4.3.1) and then extend it by integrating external linguistic knowledge in an

attempt to improve the quality of the output. The basic decoder only optimizes func-

tion f over h, whereas the extended version maximizes both h and g, approximately.

Note that the framework of deductive proof systems is used here for convenience. It

provides a level of abstract generalization for a number of algorithms. Examples in-

clude the recognition of a sentence according to a grammar, learning inside and outside

weights, Viterbi search, and in our case generating text (see Goodman (1999) for more

details). Also note that our methodology is similar in spirit to the chart realisation

frameworks presented in Section 2.2.1. We also transduce our database input schema

to strings using a chart parser. However, both our grammar and parsing strategy in-

herently dictates the selection of particular database records, fields and values before

realising them, thus departing from the idea of strict surface realisation from a given

input logical form. Finally, existing chart realisers rely on some form of initial lexicon

that contains bilexical entries, that couple semantics with surface forms (it is also com-

mon for surface forms to also contain extra features such as tense, number, gender, and

so on). In our framework, we instead implicitly jointly infer our own lexicon as part of

our grammar in the form of rules in GSURF .

4.3.1 Basic Decoder

A parser can be generally defined as a set of weighted items (some of which are desig-

nated axioms and others are goals, i.e., items to be proven) and a set of inference rules

of the form:
I1 : s1 . . . Ik : sk

I : s
Φ

which can be interpreted as follows: if all items Ii (i.e., the antecedents) have been first

proven with weight (or score) si, then item I (i.e., the consequent) is provable, with

weight s provided the side condition Φ holds. The decoding process begins with the
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Items: [A, i, j]

R(A→ BC)

Axioms: [A, i, i+1] : s A→ wi+1

Inference rule:
R(A→ B C) : s [B, i,k] : s1 [C,k, j] : s2

[A, i, j] : s · s1 · s2

Goal: [S,0,N]

Figure 4.5: The CYK algorithm for any CFG in Chomsky normal form and input string

w = w1 . . . wN .

set of axioms, and progressively applies the inference rules, in order to prove more

items until it reaches one of the designated goals.

For example the CYK algorithm for context-free grammars in Chomsky normal

form, consists of four components, a class of items, a set of axioms, a set of inference

rules and a subclass of items, namely the goal items (Figure 4.5). Following Goodman

(1999), items take two forms: [A, i, j] indicates a generated span from i to j, rooted at

non-terminal A; R(A→B C) corresponds to any of the production rules of the grammar

with two non-terminal symbols on the right hand side. Axioms correspond to each

individual word generated by the lexical grammar rules A→ α, where α is a terminal

symbol. The goal of the proof system is the special item [S,0,N], where S is the root

node of the grammar and N the length of the generated text.

Our basic decoder is similarly specified in Figure 4.6. Items in our system also take

two forms, namely [A, i, j] as above, and R(A→B) or R(A→B C) corresponding to any

of the content selection production rules of GCS with one or two non-terminals on the

right hand side. Axioms correspond to each individual word generated by the surface

realization grammar rules (8) (10) in GSURF . Our inference rules follow two forms,

one for grammar production rules with one non-terminal on the right hand side, and

another for rules with two non-terminals. For example, inference rule (1) in Figure 4.6

combines two items, namely a rule of the form A→ B with weight s and a generated

span [B, i, j] with weight s1 rooted at B, and results in a new generated span [A, i, j]

with weight s · s1, rooted at A. Finally, our system has a goal similar to CYK, [S,0,N],
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where N is the (predicted) length of the generated text. The time complexity is O(N3),

as in the case of CYK algorithm. We could have converted our grammar rules into

Chomsky normal form (CNF) and implemented the original CYK algorithm. We chose

to directly implement inference rules (1) and (2) instead, since we know that the arity

of our grammar is at most 2 and were thus able to avoid a blow-up in the number of

derived rules.

Items: [A, i, j]

R(A→ B)

R(A→ BC)

Axioms: [W, i, i+1] : s W → gi+1, gi+1 ∈ {α,gen()}

Inference rules:

(1)
R(A→ B) : s [B, i, j] : s1

[A, i, j] : s · s1

(2)
R(A→ B C) : s [B, i,k] : s1 [C,k, j] : s2

[A, i, j] : s · s1 · s2

Goal: [S,0,N]

Figure 4.6: The basic decoder deductive system. The production rules A→ B and

A→ B C are any of the set GCS; features on grammar non-terminals are omitted here

for the sake of clarity.

Now that we have defined the parsing strategy, we need a way to find the most

likely derivation; the pseudocode of Figure 4.7 gives the Viterbi search procedure for

the basic decoder. It uses an array chart[A, i, j], the cells of which get filled with sets of

weights of items. It also uses an identical array bp[A, i, j] that stores back-pointers to

the antecedents of each item rooted at A. The procedure begins by filling in the cells of

the chart with unary span rooted at W , with the weights of the lexical rules r ∈ GSURF .

Equivalently, the back-pointers array takes the corresponding generated word. Next,

items are visited and combined in order, i.e., smaller spans come before larger spans.

Given the way our grammar is constructed, items rooted in F (corresponding to fields)
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will come before items rooted in R (records) and ultimately before S. At any particular

point in the chart, the algorithm considers all the antecedent items that can be proven

given the rules of GCS and stores the highest scoring combination. Finally, we can

construct the resulting string ĝ by recursively visiting bp[S,0,N]. We trace the back-

pointers of each item to its antecedents down to the words gi emitted by the axioms.

4.3.2 k-best Decoding

The basic decoder described so far will produce the best derivation tree of the input

d given the grammar GGEN ; which unfortunately may not correspond to the best gen-

erated text. In fact, the output will often be poor as the model has no notion of what

constitutes fluent language. The grammar encodes little knowledge with regard to

syntactic well-formedness and grammatical coherence. Essentially, surface realization

boils down to the word bigram rules (6) and (7), and the lexical rules in GSURF . The

word bigram rules inject some knowledge about word combinations into the model,

but this kind of information is usually sparse and cannot capture longer range depen-

dencies.

The Viterbi search process in Figure 4.7 picks the top scoring words emitted by

the lexical production rules (lines 3–5), in order to produce the best derivation at the

root node S. Instead, it would be preferable if we added to the chart a list of the top

k words (as well as a list of the top k items [B, i, j], [C, j,k] for each production rule

r ∈ GCS), and thus produced a k-best list of derivations (with their associated strings)

at the root node. This can be done efficiently using the lazy algorithm of Huang and

Chiang (2005). We can then use a language model such as higher order n-grams, or

head dependency-style rules to rescore the generated strings directly (see also Charniak

and Johnson (2005) and Liang et al. (2006) for application of a similar idea to parsing

and machine translation, respectively). Although this method is fast, i.e., linear in k,

we would practically have to set k very high and search among exponentially many

possible generations for a given input.

A better solution, which is common practice in machine translation, is to rescore

the derivation trees online. Chiang (2007) intersects a PCFG grammar with a weighted

finite state automaton (FSA), which represents a n-gram language model; the states of

the FSA correspond to n−1 terminal symbols. The resulting grammar is also a PCFG

that incorporates the FSA. Similarly, we can intersect our grammar with an ensemble
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1: function DECODE(GGEN ,d,N)

2: for i← 0 . . .N do
3: for all r ∈ d : W → gi+1 ∈ GSURF do
4: chart[W, i, i+1]← [W, i, i+1] : s

5: bp[W, i, i+1]← gi+1

6: end for
7: end for
8: for l← 2 . . .N do
9: for all i,k, j so that j− i = l and i < k < j do

10: for all items [B, i, j] or [B, i,k], [C,k, j] inferrable from chart and rules

r ∈ GCS do
11: if r is of the form A→ B then
12: chart[A, i, j]← max([B, i, j] : s1×P(r))

13: bp[A, i, j]← argmax([B, i, j] : s1×P(r))

14: end if
15: if r is of the form A→ B C then
16: chart[A, i, j]← max(chart[B, i,k]× chart[C,k, j]×P(r))

17: bp[A, i, j]← argmax([B, i,k] : s1× [C,k, j] : s2×P(r))

18: end if
19: end for
20: end for
21: end for
22: return chart[S,0,N], bp[S,0,N]

23: end function

Figure 4.7: Viterbi Search procedure for the basic decoder.
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of external probabilistic models, provided that they express a regular language. The

most probable generation ĝ is then calculated as:

ĝ = f
(

argmax
g,h

p(g) · p(g,h |d)
)

(4.5)

where p(g,h |d) is the decoding likelihood for a sequence of words g = g1 . . .gN of

length N and the hidden correspondence h that emits it, i.e., the likelihood of our

grammar for a given database input scenario d. p(g) is a measure of the quality of each

output and could for instance be provided by a language model. (see Section 4.4.1 for

details on how we estimate p(g,h |d) and p(g)). In theory the function f above should

optimise h and g jointly, thus admitting no search errors. In practice, however, the

resulting grammar after the intersection is prohibitively large, and calls for pruning of

the search space. In the following we show how to extend the basic generation decoder

in Figure 4.6 by intersecting it (linearly) with an ensemble of external probabilistic

models.

4.3.2.1 Intersection with External Models

A n-gram language model is an n− 1-th order Markov chain, the states of which are

words. Given a sentence w = w1 . . . wN of length N, with wi . . .wi−1 ∈ V , wN = 〈/s〉 a

special stop symbol, and V the vocabulary of the language, the probability in particular

of a 2nd order Markov chain language model, or 3-gram language model is:

P(w1 . . . wN) =
N

∏
i=1

q(wi |wi−1,wi−2)

where w0 = w−1 = 〈s〉, a special start symbol for the sentence. The estimates q of

the trigrams are obtained from the training corpus, usually incorporating some kind of

smoothing such as Good-Turing (Good, 1953) or Kneser-Ney (Kneser and Ney, 1995)

and backing-off techniques to lower order models for unseen trigrams (Katz, 1987).

In addition to n-gram language models which are routinely used as a means of en-

suring lexical fluency and some rudimentary grammaticality, we also inject syntactic

knowledge into our generator. We represent syntactic information in the form of di-

rected dependencies which could potentially capture long range relationships beyond

the horizon of a language model. Figure 4.8 shows a dependency-style representation

for the sentence “Cloudy with temperatures between 10 and 20 degrees” and its corre-

sponding phrase structure. The dependency graph in Figure 4.8b captures grammatical

relations between words via directed edges from syntactic heads to their dependents
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(e.g., from a verb to its subject or from a noun to a modifying adjective). Edges can

be labeled to indicate the type of head-dependent relationship (e.g., subject or object)

or unlabeled as shown in the figure. Formally, a dependency structure D is a set of

dependency pairs 〈wh,wa〉 of a head wh and an argument word wa, respectively. In

general, the argument is the modifier, object or complement; the head most of the time

determines the behavior of the pair. In Figure 4.8b, cloudy is the head of with, with

is the head of temperature, and so on. D(wh) returns a set of dependency pairs whose

head is wh, e.g., D(10) = {and, 20}.

S

PP

NP

PP

NP

NNS

degrees

QP

CD

20

CC

and

CD

10

IN

between

NP

NNS

temperatures

IN

with

ADVP

RB

Cloudy

(a)

RB IN NNS IN CD CC CD NNS
Cloudy with temperatures between 10 and 20 degrees

ROOT

(b)

Figure 4.8: Phrase structure tree and dependency graph for the same sentence.

Previous work (Ratnaparkhi, 2002) has incorporated dependency information into

surface realization more directly by generating a syntactic dependency tree rather than

a word sequence. The underlying probabilistic model predicts each word by condi-

tioning on syntactically related words (i.e., parent, grandparent, and siblings). Impor-

tantly, this approach requires a corpus that has been annotated with dependency tree
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structures. We obviate the need for manual annotation by considering dependency

structures that have been induced automatically in an unsupervised fashion. For this,

we use the Dependency Model with Valence (DMV) (Klein and Manning, 2004); how-

ever, there is nothing inherent in our formulation that restricts us to this model. Any

other unsupervised model that learns dependency structures in a broadly similar fash-

ion (e.g., captures the attachment likelihood of an argument to its head) could have

been used instead, with the proviso that it is weakly equivalent with our grammar,

i.e., it generates the same surface string regardless of the possibly different depen-

dency structures it may induce. Furthermore, its expressive power should not exceed

that of a regular language, which is the case for the DMV, as our aim is to intersect it

with a CFG.2

DMV (Klein and Manning, 2004) is defined as a head-outward dependency model

over word classes, in our case part-of-speech (POS) tags derived from the Penn Tree-

bank project (Marcus et al., 1993), which includes a model of valence. In other words

they formulate a non-recursive PCFG that imposes a search strategy from the head of

a word (or equivalently the class of the word) to its dependent arguments, taking into

consideration the distance of the arguments to the head (the farther away a word is

from the head, the less probable it is to be attached as an argument). The generative

process they describe begins at the ROOT word. Then each head generates a series of

non-STOP arguments to one side (i.e., left or right), then a STOP argument to that side,

then a sequence of non-STOP arguments to the other side and finally a second STOP

argument.

For example, in the dependency structure in Figure 4.8b, under this process, we first

generate a single child of ROOT, here Cloudy3. Then we recurse to the subtree under

Cloudy. This subtree first generates the right argument with. The recursion continues

to the subtree under with, and likewise under temperature, between and degrees. After

the word degrees it generates a right STOP, since there is no word on its right that could

get attached as a dependent-argument, and starts generating on its left with the word

10. The process continues in the same fashion until the word 20; there it generates a

right STOP, then a left STOP and since there is no other word in either direction left to

attach, the process ends.

Finally, note that although we work with two external information sources (i.e.,

2Intersecting two CFGs is undecidable, or PSPACE-complete if one CFG is finite (Nederhof and
Satta, 2004).

3In this example we use a lexicalised version of the process, for demonstration purposes only. The
exact same procedure applies, by replacing words with the POS tags.
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language models and dependencies), the framework we propose applies to an arbitrary

number of models expressing a regular language. For instance, we could incorporate

models that capture dependencies relating to content selection such as field n-grams,

however we leave this to future work.

4.3.2.2 Notation

We begin by introducing some notation. We define two functions p and q which oper-

ate over M surface-level models and strings a = a1 . . .al , of length l, with ai ∈V ∪{?}.
V is the vocabulary of the observed text w (obtained from the training corpus), and the

? symbol represents the elided part of a string. Recall that our k-best decoder needs to

keep a list of generated sub-strings a at each node, for rescoring purposes. Note that

these sub-strings are (potentially) different from the observed text w; the top-scoring

string on the root node essentially collapses to the final generated text g. Storing lists of

whole sub-strings generated so far at each node, would require considerable amounts

of memory. To avoid this we define a function q(a) that stores the essential minimum

string information needed for each of the surface-level models (the ? symbol stands for

the omitted parts of a string) at each step, in order to correctly compute the rescoring

weight. Function p(a) essentially calculates the rescoring weight for a given string, by

linearly interpolating the scores of each individual model mi with a weight βi. There-

fore applying p(a) in a bottom-up fashion (see the extended decoder of Figure 4.9) on

the output of q(a) allows us to correctly compute the rescoring weight of each model

for the whole document incrementally. More formally:

p(a) =
M

∑
i

βi pmi(a) s.t.
M

∑
i

βi = 1 (4.6)

In our setting, we make use of a language model (pm1) and a dependency model (pm2):

pm1(a1 . . .al) = ∏
n≤i≤l

?/∈{ai−n+1,...,ai}

PLM(ai|ai−n+1 . . .ai−1) (4.7)

pm2(a1 . . .al) = PDEP
(
D(ah)

)
, where ah ∈ {a1, . . . ,al} (4.8)

The function pm1 computes the LM probabilities for all complete n-grams in a string;

PLM returns the probability of observing a word given the previous n− 1 words. pm2

returns the probability of the dependency model on the dependency structure D headed

by word ah. For a dependency structure D, each word ah has dependents depsD(ah, le f t)
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a1 . . .al pm1(a1 . . .al) qm1(a1 . . .al)

mostly cloudy , PLM(,|mostly cloudy) mostly cloudy ? cloudy ,

with a 1 with a

mostly cloudy ? cloudy , with a PLM(with|cloudy ,) × PLM(a|, with) mostly cloudy ? with a

Table 4.2: Example values for functions pm1 and qm1 for the phrase “mostly cloudy, with

a”. We assume a 3-gram language model.

that attach on its left and dependents depsD(ah,right) that attach on its right. Equa-

tion (4.9) recursively defines the probability of the dependency D(ah) rooted at ah

Klein and Manning (2004):

PDEP
(
D(ah)

)
= ∏

dir∈[le f t,right]

[
∏

depsD(ah,dir)
PSTOP(¬STOP|ah,dir,ad j)

PCHOOSE(aa|ah,dir)PDEP
(
D(aa)

)]
PSTOP(STOP|ah,dir,ad j)

(4.9)

PSTOP is a binary multinomial indicating whether to stop attaching arguments to a head

word ah given their direction, i.e., left or right, and their adjacency, i.e., whether they

are directly adjacent to ah or not. PCHOOSE is a multinomial over all possible argument

words given ah and the direction of attachment. We next define function q(a) which

returns a set of M strings, one for each model mi (we will use it shortly to expand the

lexical items [A, i, j] of the basic decoder in Figure 4.6).

q(a) = 〈qm1(a), . . . ,qmM(a)〉 (4.10)

(4.11)

qm1(a1 . . .al) =

a1 . . .an−1 ?al−n+2 . . .al if l ≥ n

a1 . . .al otherwise
(4.12)

(4.13)

qm2
1≤k≤l

(a1 . . .akak+1 . . .al) =



al if l = 1

qm2(a1 . . .ak) if pm2(a1 . . .ak)≥

pm2(ak+1 . . .al)

qm2(ak+1 . . .al) otherwise

(4.14)

Function qm1(a) compresses the string a, by eliding words when all their n-grams

have been recognized. We thus avoid storing the whole sub-generation string, pro-
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duced by the decoder so far, as mentioned earlier. Table 4.2 gives example values

for pm1(a) and qm1(a) for the phrase “mostly cloudy, with a”. Function qm2(a) re-

turns the head of the string a. As we progressively combine sub-strings (a1 . . .ak)

and (ak+1 . . .al) together, for any 1 ≤ k ≤ l, and their head words ah1 ∈ {a1, . . . ,ak}
and ah2 ∈ {ak+1, . . . ,al}, function qm2(a) returns either ah1 or ah2 . The probabil-

ity PDEP decides whether ah1 attaches to ah2 or vice versa, thus augmenting D(ah1)

with the pair 〈ah1,ah2〉 or D(ah2) with 〈ah2,ah1〉, respectively.

Note that equation (4.14) evaluates whether every word should attach to the left or

right of every other head word, and therefore essentially collapses to:

Pmdep = PDEP
(
D(ah)

)
= PSTOP(¬STOP|ah,dir,ad j)PCHOOSE(aa|ah,dir)

PSTOP(STOP|ah,dir,ad j)
(4.15)

For example, in the case of pm2(a1 . . .ak), ah becomes one of a1 . . .ak, aa is one of

ak+1 . . .al , dir = right and ad j is true if ah = ak and aa = ak+1.

Items: [A, i, j;q(g j
i )]

R(A→ B)

R(A→ BC)

Axioms: [W, i, i+1;q(gi+1
i )] : s · p(gi+1

i ) W → gi+1, gi+1 ∈ {α,gen()}

Inference rules:

(1)
R(A→ B) : s [B, i, j;q(g j

i )] : s1

[A, i, j;q(g j
i )] : s · s1 · p(g j

i )

(2)
R(A→ B C) : s [B, i,k;q(gk

i )] : s1 [C,k, j;q(g j
k)] : s2

[A, i, j;q(g j
i )] : s · s1 · s2 · p(g j

i )

Goal: [S,0,N;q(〈s〉n−1gN
0 〈/s〉)]

Figure 4.9: Extended decoder using the rescoring function p(g). Productions A→ B

and A→ B C can be any of the GCS rules in Figure 4.1; features on grammar non-

terminals are omitted for the sake of clarity.
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4.3.2.3 Extended Decoder

We are now ready to extend the basic decoder in Figure 4.6, so that it includes the

rescoring function p(g j
i ) over a generated sub-string gi . . .g j. The new deduction sys-

tem is specified in Figure 4.9. Items [A, i, j] become now [A, i, j;q(g j
i )]; they repre-

sent derivations spanning gi to g j rooted at the non-terminal A and augmented with

model-specific strings as defined above; in other words, they include the compressed

sub-generations with elided parts and their head word. Analogously, our goal item now

includes q
(
〈s〉n−1gN

0 〈/s〉
)
. Note that gN

0 is augmented with (n− 1) start symbols 〈s〉
and an end symbol 〈/s〉. This is necessary for correctly computing n-gram probabili-

ties at the beginning and end of the sentence. Figure 4.10 shows example instantiations

of the inference rules of our extended decoder.

The generation procedure is identical to the procedure described for the basic de-

coder in Figure 4.7, save the exponentially more items that need to be deduced. Recall

that the chart of the Viterbi search for the basic decoder in Figure 4.7 stores at each

cell chart[A, i, j] the set of combined weights of cells that correspond to the proved an-

tecedents of item [A, i, j]. The new chart ′ for the extended decoder equivalently stores

a set of lists of weights at each cell position chart ′[A, i, j]. The list contains the items

[A, i, j;q(g j
i )] that have the same root non-terminal A and span between i and j, but a

different set q(g j
i ), sorted best-first. The running time of integrating the LM and DMV

models is O(N3|V |4(n−1)|P|), where V is the output vocabulary and P the vocabulary

used in the DMV. When using a lexicalized dependency model, P collapses to V , oth-

erwise it contains the part-of-speech (POS) tags for every gi ∈V . Notice that rule (2)

in Figure 4.9 combines two items that contain at most 2(n−1) words, hence the expo-

nent 4(n−1). This running time is too slow to use in practice, so as we explain below

we must adopt some form of pruning in order to be able to explore the search space

efficiently.

4.3.2.4 Approximate Search

Consider the task of deriving a k-best list of items L([A, i, j;q(g j
i )]) for the deduced

item [A, i, j;q(g j
i )] of rule (2) in the extended decoder of Figure 4.9. An item Lm([A, i, j;

q(g j
i )]) at position m of the list, with 1 ≤ m ≤ k, takes the form [A, i, j;q(gm

j
i )]. An

example of this procedure is shown in Figure 4.11. The grid depicts all possible com-

binations of items [B, i,k;q(gk
i )] and [C,k, j;q(g j

k)] as inferred by a rule of the form

R(A→ B C) with their corresponding weights. Any of the k2 combinations can be



66 Chapter 4. Joint Model of Generation

R(R(skyCover1.t)→ FS(temp1,start) R(temp1.t)) : s

[FS(temp1,start),1,2;〈with, IN〉] : s1 [R(temp1.t),2,8;〈a low?15 degrees, JJ〉] : s2

[R(skyCover1.t),1,8;〈with a?15 degrees, JJ〉] : s · s1 · s2 · p(〈with a?15 degrees, JJ〉)

R(FS(windSpeed1,min)→ F(windSpeed1,max) FS(windSpeed1,max)) : s

[F(windSpeed1,max),3,4;〈high, JJ〉] : s1 [FS(windSpeed1,max),4,5;〈15, CD〉] : s2

[FS(windSpeed1,min),3,5;〈high 15, JJ〉] : s · s1 · s2

R(F(windDir1,mode)→W(windDir1,mode)) : s [W(windDir1,mode),3,4;〈southeast, JJ〉] : s1

[F(windDir1,mode),3,4;〈southeast, JJ〉] : s · s1

Figure 4.10: Inference rules in the extended decoder for productions (2), (4), and (7)

from Table 4.1 (WEATHERGOV domain). The strings in 〈. . .〉, correspond to the output

of the functions qmlm and qmdep . We adopt an unlexicalized dependency model, trained

on POS tags derived from the Penn Treebank project Marcus et al. (1993). In the first

example IN corresponds to the word with and JJ to the word low, in the second example

JJ corresponds to the word high and CD to the number 15, whereas in the third example

JJ corresponds to the word southeast.

used to create the resulting k-best list shown at the bottom of the figure, and store it

on the cell of chart ′[A, i, j]. However, we only want to keep k items, so most of them

are going to be pruned away. In fact, the grid of the example can be in the worst case

a cube, i.e., can hold up to three dimensions, one for all the rules A→ B C with the

same left hand-side non-terminal A, and two for the corresponding items rooted on B

and C4; this calls for the calculation of k3 combinations. A better approach is to apply

cube pruning (Chiang, 2007; Huang and Chiang, 2005), i.e., to compute only a small

corner of the grid and prune items out on the fly, thus obviating the costly computation

of all k3 combinations.

Consider Figure 4.12 as an example. Each side of the grid shows the lists of

the top three items for each antecedent item. Numbers on the grid represent the to-

tal score for each combination. Figures 4.12b–4.12d illustrate the enumeration of

4The deduced item [R(skyCover1.t);q(g8
1)] of Figure 4.11 can also be inferred by the

rule R(R(skyCover1.t)→ R(windSpeed1.t) FS(windSpeed1,start)) (and its corresponding antecedent
items) or the rule R(R(skyCover1.t)→ R(rainChance1.t) FS(rainChance1,start)), and so on. We illus-
trate only a slice of the cube, depicting the enumeration of k-best lists for a fixed grammar rule, for the
sake of clarity.
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[R(temp1.t),2,8;〈a low?15 degrees, JJ〉] .56 .40 .25 .20

[R(temp1.t),2,8;〈low around?15 degrees, JJ〉] .54 .35 .30 .17

[R(temp1.t),2,8;〈a low? around 17, RB〉] .44 .15 .08 .10

⇒



[R(skyCover1.t),1,8;〈with a?15 degrees, JJ〉 : .40

[R(skyCover1.t),1,8;〈with low?15 degrees, JJ〉] : .35

[R(skyCover1.t),1,8;〈a a?15 degrees, JJ〉] : .25

[R(skyCover1.t),1,8;〈around low?15 degrees, RB〉] : .17

[R(skyCover1.t),1,8;〈with a? around 17, RB〉] : .15

· · ·


Figure 4.11: Computing an exhaustive list for the deduced item [R(skyCover1.t);q(g8

1)]

via application of inference rule (2) of the extended decoder in Figure 4.10. The an-

tecedent items are the rule R(R(skyCover1.t)→ R(temp1.t) FS(temp1,start)) and the

items [R(temp1.t),2,8;q(g8
2)], FS(temp1,start),1,2;q(g2

1)]. The figure shows all the

different item combinations for the particular rule; on each side of the grid are the lists

of the top three candidate items for each antecedent item, sorted best-first. Numbers

in the grid represent the total score for each combination.
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Figure 4.12: Computing item combinations for items u1 = [R(temp1.t),2,8;q(g8
2)],

u2 = [FS(temp1,start),1,2;q(g2
1)] using cube pruning. In (a)-(c) we enumerate the

combinations of items in order to construct a resulting k-best list as described in the

text.

the top three combinations in best-first order. Cells in gray represent the frontiers

at each iteration; cells in black are the resulting top three items. The basic intu-

ition behind cube pruning is that for a pair of antecedent items u1 = [B, i,k;q(gk
i )],

u2 = [C,k, j;q(g j
k)] and their sorted k-best lists L(u1), L(u2), the best combinations

should lie close to the upper-left corner of the grid. In the example, the 3-best list of

the nodes u1 = [R(temp1.t),2,8;q(g8
2)] and u2 = [FS(temp1,start),1,2;q(g2

1)] are:

L(u1) =
[
〈a low?15 degrees, JJ〉,〈low around?15 degrees, JJ〉,〈a low? around 17, RB〉

]
L(u2) =

[
〈with, IN〉,〈a, DT〉,〈around, RB〉

]
and intuitively the best combination should be the derivation on the top left corner5:

(
L1(u1),L1(u2)

)
=
(
〈a low?15 degrees, JJ〉,〈with, IN〉

)
= 〈with a?15 degrees, IN〉

In cases where the combination cost, i.e., the score of the grammar rule multiplied

with the rescoring weight p(g), is negligible, we could start enumerating item com-

binations in the order shown in Figures 4.12a-c, starting from (L1(u1),L1(u2)) and

5Note that the head of the sub-generation fragment has shifted to the head of L2.
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stopping at k. Since the two lists are sorted it is guaranteed that L2(u1), i.e., the sec-

ond item in the k-best list of u1 is either (L1(u1),L2(u2)) or (L2(u1),L1(u2)) (in the

example of Figure 4.12b it is the latter). We thus select it and move on to compute

its neighboring combinations, and so on.6For the computation of the k-best lists of the

axioms [W, i, i+1;q(gi+1
i )], we enumerate the top-k terminal symbols gi+1.

If we take into account the combination cost, the grid is non-monotonic, and there-

fore the best-first guarantee no longer holds as we enumerate neighbors in the fashion

just described. Huang and Chiang (2007) argue that the loss incurred by the search er-

ror is insignificant compared to the speedup gained. In any case, to overcome this, we

compute the resulting k-best list, by first adding the computed item combinations in a

temporary buffer, and then resort it after we have enumerated a total of k combinations.

4.3.3 Hypergraph Representation

We represent our grammar and each input scenario as a weighted hypergraph (Gallo

et al., 1993). The choice of the hypergraph representation is merely one of several alter-

natives. For example, we could have adopted a representation based on weighted finite

state transducers (de Gispert et al., 2010) since our model describes a regular language

both in terms of the PCFG and the surface level models we intersect it with. It is also

possible to represent our grammar as a pushdown automaton (Iglesias et al., 2011) and

intersect it with finite automata representing a language model and dependency-related

information, respectively. The choice of the hypergraph representation was motivated

by its compactness7 and the fact that it allows for extensions of our PCFG with rules

which capture more global aspects of the generation problem (e.g., document planning)

and which unavoidably result in context-free languages. In fact in Chapter 5 we extend

our grammar with a set of context-free rules, hence finite state implementations are not

suitable any more. In the following we first give the definition of hypergraphs, and then

describe an automatic process to convert the basic and the extended decoder, presented

in the previous sections, into a hypergraph. Finally, we provide the implementation of

the Viterbi search algorithm for each of the decoders.

Huang and Chiang (2005) define a weighted directed hypergraph as follows:

6Contrary to Huang and Chiang (2007) we use probabilities instead of log scores in the computation
of the item combinations.

7Hypergraphs are commonly used in the machine translation literature to allow for compact encoding
of SCFGs even though in some cases they also describe regular languages. For example, this is true for
the SCFGs employed in hierarchical phrase-based SMT (Chiang, 2007) which assume a finite input
language and do not permit infinite recursions.
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Definition 1 An ordered hypergraph H is a tuple 〈V,E, t,R〉, where V is a finite set of

nodes, E is a finite set of hyperarcs and R is the set of weights. Each hyperarc e ∈ E

is a triple e = 〈T (e),h(e), f (e)〉, where h(e) ∈ V is its head node, T (e) ∈ V ∗ is a set

of tail nodes and f (e) is a monotonic weight function R|T (e)| to R and t ∈V is a target

node.

Definition 2 We impose the arity of a hyperarc to be |e|= |T (e)|= 2, in other words,

each head node is connected with at most two tail nodes.

Definition 3 The backward-star BS(v) of a node v is the set of incoming hyperarcs

{e ∈ E |h(e) = v}. The in-degree of v is |BS(v)|.

Definition 4 A derivation D of a node v is recursively defined as follows:

• If e ∈ BS(v) with |e|= 0, then D = e, is a derivation of v, with size |D|= 1, and

weight w(D) = f (e)().

• If e ∈ BS(v) where |e| > 0 and Di is a derivation of Ti(e) for 1 ≤ i ≤ |e|, then

D =< e,D1 . . .D|e| > is a derivation of v, its size |D| = 1+∑
|e|
i=1 |Di| and its

weight w(D) = f (e)
(
w(D1), . . . ,w(D|e|)

)
.

Definition 5 Let Dkv be the kth best derivation of v, and D(v) be the list of k-best

derivations D1(v), . . . , Dk(v).

Definition 6 A derivation with back-pointers D̂ of v is a tuple < e, j > such that e ∈
BS(v), and j ∈ {1,2, . . . ,k}|e|.

Klein and Manning (2001) describe an automatic procedure to convert a grammar in

Chomsky normal form and an input example to a weighted directed hypergraph. Anal-

ogously, we can convert both the basic and the extended decoder, as follows (for sim-

plicity we will illustrate the procedure for the basic decoder only):

• each node [A, i, j] in the hypergraph corresponds to an [A, i, j] item spanning

words of the input with indices from i to j;

• inference rule (1) of the basic decoder in Figure 4.6, is mapped to the hyperarc

〈(B, i, j),(A, i, j), f 〉, where f = s · s1;

• similarly, rule (2) is mapped to the hyperarc 〈((B, i,k),(C,k, j)) ,(A, i, j), f 〉, with

f = s · s1 · s2;
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• the axioms corresponding to the lexical rules GSURF are trivially mapped to the

hyperarc 〈ε,(A, i, i+1), f 〉, with f = s and ε being the empty symbol.

The hypergraph can be thus viewed as an instantiation of the weighted deduction sys-

tem. Figure 4.13 shows an example of the (partial) hypergraph representation of our

grammar and the database input of Figure 3.4.

Next, we need to define a search algorithm that finds the best derivation (we will

refer to it as the 1-best Viterbi search algorithm) in the hypergraph, much as we did

with the Viterbi search algorithm for the basic decoder in Figure 4.7. Recall, that the

basic decoder defines a specific order of combining items with smaller spans before

items with larger spans, as well as antecedent items before consequent items. In order

to do the same here we first need to traverse the hypergraph in a particular order:

Definition 7 The graph projection of a hypergraph H = 〈V,E, t,R〉 is a directed graph

G = 〈V,E ′〉 where E ′ = {(u,v) |∃e ∈ BS(e),u ∈ T (e)}. A hypergraph H is considered

to be acyclic if the graph projection G is a directed acyclic graph. Therefore, a topo-

logical ordering of H is an ordering of nodes V , which is also a topological ordering

in G (from sources to target).

Now we are ready to define the 1-best Viterbi search algorithm for a hypergaph H; the

pseudocode is shown in Figure 4.14. The corner-stone step of the algorithm is to visit

all nodes v ∈ V in topological order. Then for each incoming hyperarc e of node v

(i.e., the back-star BS(v)), we only need to update the 1-best derivation D̂1 list of v

with the best scoring tuple 〈e,1〉. The runtime complexity of the algorithm is O(|E|),
since the arity of the hypergraph is constant. A partial execution of this algorithm, is

given in the example of Figure 4.13, which highlights the 1-best derivation path in red.

Notice that the back-star of node FS0,2(skyCover1,start) has 4 different hyperarcs, as

a result of instantiating rules (4) and (5) of GCS (FS(r,r. fi)→ F(r,r. f j) FS(r,r. f j) and

FS(r,r. fi)→ F(r,r. f j) respectively), for different value of fields f and spans:

BS (FS0,2(skyCover1,start)) =


F0,1(skyCover1,%) FS1,2(skyCover1,start)

F0,2(skyCover1,%)

F0,1(skyCover1, time) FS1,2(skyCover1,start)

F0,2(skyCover1, time)


However, following the argumentation of Section 4.3.2, the best derivation returned

by the 1-best Viterbi algorithm does not correspond to the best generated text. Hence
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Figure 4.13: Partial hypergraph representation for the sentence Cloudy with tempera-

tures between 10 and 20 degrees. For the sake of readability, we show a partial span

on the first two words without weights on the hyperarcs. In red is the 1-best derivation

path extracted via the Viterbi search algorithm of Figure 4.14.
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1: procedure VITERBI(〈V,E, t,R〉)
2: for v ∈V in topological order do
3: for e ∈ BS(v) do
4: D̂1(v)← max

(
D̂1(v), 〈e,1〉

)
5: end for
6: end for
7: end procedure

Figure 4.14: 1-best Viterbi Search procedure on hypergraphs

we can extend it to search for the top k derivations D̂ for each node v, using the lazy

algorithm of Huang and Chiang (2005). The pseudocode of Figure 4.15 (Huang and

Chiang, 2007) implements the cube pruning heuristic described in Section 4.3.2.4,

directly on the hypergraph framework. The process is analogous to the approximate

Viterbi search for the extended decoder, described in Section 4.3.2.4.

The notation 〈e, j〉 identifies the derivation of v via the hyperedge e and the jthi -best

sub-derivation of antecedent item ui, where 1≤ i≤ | j|. 1 is a vector with all elements

set to 1, bi is a vector with all elements set to 0 except for the ith which is set to 1.

Function CUBE returns the top scoring derivation, by calling KBEST for each node v

in the hypergraph in topological order. The procedure KBEST begins by initialising

the priority queue cand with the top-left corner (recall Figure 4.12a) item from each

hyperedge (lines 8–10). Then it explores the rest of derivations from the top-left corner

and on (Figures 4.12b-c), by appending items out of order in a temporary buffer called

bu f (lines 11–15). Once the buffer is filled with k items (or there are no more left to

explore), we sort it and store it to D(v), i.e., the list of derivations for the current node

v under consideration. PUSHSUCC essentially enumerates all the combinations of the

derivations lists of antecedent items in the correct order, as described in Section 4.3.2.4,

i.e., pushes the successors {〈e, j+bi〉 | i ∈ 1 . . . |e|} of node v along hyperedge e into

cand (lines 20–25).

4.4 Experiments

Generation in our model amounts to finding the best derivation (ĝ, ĥ) that maximizes

the product of two likelihoods, namely p(g,h |d) and p(g) (see equation (4.5)). p(g,h |d)
corresponds to the rules of GGEN that generate the word sequence g, whereas p(g) is
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1: function CUBEPRUNING(〈V,E, t,R〉)
2: for v ∈V in topological order do
3: KBEST(v)

4: end for
5: return D1(TOP)

6: end function
7: procedure KBEST(v)

8: cand←{〈e,1〉 | e ∈ IN(v)} . for each incoming e

9: HEAPIFY(cand) . a priority queue of candidates

10: bu f ← /0

11: while |cand| > 0 and |bu f | < k do
12: item← POP-MAX(cand)

13: bu f ← item

14: PUSHSUCC(item, cand)

15: end while
16: sort bu f to D(v)

17: end procedure
18: procedure PUSHSUCC(〈e, j〉, cand)

19: e is u→ u1 . . .u|e|
20: for i in 1 . . . |e| do
21: j′← j+bi

22: if |D(ui)| ≥ j′i then
23: PUSH(〈e, j′〉,cand)

24: end if
25: end for
26: end procedure

Figure 4.15: Cube pruning on hypergraphs (Huang and Chiang, 2007)
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Dataset Precision Recall F1

ROBOCUP 86.4 86.4 86.4

WEATHERGOV 67.8 67.2 67.5

ATIS 100 83.8 91.2

WINHELP 82.3 83.6 83.0

Table 4.3: Precision, Recall and F1 results on the alignment task on ROBOCUP,

WEATHERGOV, ATIS, WINHELP.

the likelihood of g independently of d. In the following sections we present how we

trained the weights of our grammar GGEN , how we estimate the hyperparameters k and

βLM of the model, as well as how we determine output text length N for each scenario

before decoding.

4.4.1 Training GGEN weights

In order to learn the weights of the grammar rules we directly estimate them on the

hypergraph representation using the EM algorithm. Given a training set of scenarios

with database records d and text w we maximize the marginal likelihood of the data,

while summing out record tokens r and their fields ri.f, which can be regarded as latent

variables:

max
θ

∏
(w,d)

∑
r,f

p(r, f,w|d;θ), (4.16)

where θ are the multinomial distributions or weights of GGEN . The EM algorithm al-

ternates between the E-step and the M-step. In the E-step we compute the expected

counts for the rules using a a dynamic program similar to the inside-outside algo-

rithm (Li and Eisner, 2009). Then in the M-step, we optimise θ by normalising the

counts computed in the E-step. We initialise EM with a uniform distribution for each

multinomial distribution and applied add-0.001 smoothing to each multinomial in the

M-step. Examples of the top scoring items of the multinomial distributions for some

of the grammar rules of GGEN are given in Table 4.4. For each domain we iterate EM

until the F1 score on the alignment task (see Section 3.3.1) stops increasing. In the

case of WINHELP, the F1 score was really low, possibly due to the limited number of

training documents (128 scenarios). In order to overcome this, we adopted a form of

staged learning: we ran first a set of EM iterations on a version of the corpus where

each document (of the corresponding scenario) is split into sentences (recall that sce-
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narios in the original dataset of Branavan et al. (2009) were split into sentences rather

than documents), and then another set of iterations on the complete scenarios. By the

first set of iterations we essentially provided the model with a good initial estimate of

the rule weights, since we restrict considerably the choices of the model at the record

level. According to Table 3.2 there are on average 9.2 records per document, or 2.1 per

sentence, hence the content selection task on the sentence level is much easier. Then

we relax this restriction by training on the whole document, using the rule weights

obtained from the previous run on EM, and achieve a reliable F1 score. Table 4.3 sum-

marises the results on the alignment task, as described in Section 3.3.1, across all four

domains. The results provide an interesting indication of the quality of the grammar

rule weights obtained, since we use the same grammar to generate alignments as well.

We can thus correlate better alignment performance with better trained rule weights.

Recall, however, that the metrics used, measure alignment at the record level only,

and not of the entire latent structure between records-fields-values and words. Also

note that content selection in ATIS and WINHELP entails selecting all records in the

database as they need to be specifically mentioned in the text, hence the relatively high

scores in Table 4.3. WEATHERGOV on the other hand poses a different challenge as

far as content selection is concerned; it has the highest number of records present in

each scenario, out of which only 16.1% is mentioned (5.8 out of 36); this explains the

comparatively low scores in the table, and will also introduce noise to the grammar

weights.

4.4.2 Training external models

We obtain an estimate for p(g) by linearly interpolating the score of a language model

and DMV (Klein and Manning, 2004). Specifically, our language models were trained

with the SRI toolkit Stolcke (2002) using add-1 smoothing.8 For the ROBOCUP do-

main, we used a bigram language model given that the average text length is relatively

small. For WEATHERGOV and ATIS, we used a trigram language model. We obtained

an unlexicalized version of the DMV9 for each of our domains. All datasets were

tagged automatically using the Stanford POS tagger (Toutanova et al., 2003) and words

8Adopting a more complex smoothing technique such as Good-Turing Good (1953) is usually not
applicable in so small vocabularies. The statistics for computing the so called count-of-counts, i.e., the
number words occurring once, twice and so on, are not sufficient and lead to poor smoothing estimates.

9When trained on the WSJ-10 corpus, our implementation of the DMV obtained the same accuracy
as reported in Klein and Manning (2004). WSJ-10 consists of 7,422 sentences with at most 10 words
after removing punctuation.
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Weight Distribution Top-5 scoring items

P(α |pass, from, purple2) purple2, a, makes, pink10, short

P(α |steal, (null), NULL) ball, the, steals, from, purple8

P(α | turnover, (null), NULL) to, the, ball, kicks, loses

(a) ROBOCUP

Weight Distribution Top-5 scoring items

P(ri.t | temperature.t)
windDir, sleetChance, windSpeed,

freezingRainChance, windChill

P(ri.t |windSpeed.t)
gust, (null), precipPotential,

windSpeed, snowChance

P(ri.t |skyCover.t)
temperature, skyCover, thunderChance,

(null), rainChance

P( fi | temperature.time) min, max, mean, (null), time

P( fi |windSpeed.min) max, time, percent, mean, (null)

P( fi |gust.max) min, mean, (null), time, max

P(α |skyCover, percent, 0-25) “,”, clear, mostly, sunny, mid

P(α |skyCover, percent, 25-50) “,”, cloudy, partly, clouds, increasing

P(α | rainChance, mode, Definitely) rain, of, and, the, storms

(b) WEATHERGOV

Weight Distribution Top-5 scoring items

P(ri.t |search.t) flight, search, when, day, condition

P(ri.t |flight.t) search, day, flight, month, condition

P(ri.t |day.t) when, search, flight, month, condition

P(α |flight, to, mke) mitchell, general, international, takeoffs, depart

P(α |search, what, flight) I, a, like, to, flight

P(α |search, type, query) list, the, me, please, show

(c) ATIS

Table 4.4: Top-5 scoring items of the multinomial distributions for record rules, field rules

and the categorical word rewrite rule of GGEN (See rules (2), (4), and (8) in Table 4.1,

respectively). On the first column of each table is the underlying multinomial distribution

for the corresponding rule.
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k-BEST-LM k

ROBOCUP 25

WEATHERGOV 15

ATIS 40

WINHELP 120

(a) Interpolation with LM

k-BEST-LM-DMV k βLM

ROBOCUP 85 0.9

WEATHERGOV 65 0.3

ATIS 40 0.6

WINHELP 120 0.9

(b) Interpolation with LM and DMV

Table 4.5: Optimal values for parameters k and βLM calculated by performing grid

search against BLEU-4 on the development set. βLM in Table (a) is set to 1.

were augmented with their part of speech, e.g., low becomes low/JJ, around becomes

around/RB and so on; words with several parts of speech were duplicated as many

times as the number of different POS tags assigned to them by the tagger. We initial-

ized EM to uniform distributions where a small amount of noise10 was added over all

multinomials (i.e., PSTOP and PCHOOSE) to break initial symmetry. Klein and Manning

(2004) use a harmonic distribution instead, where the probability of one word head-

ing another is higher if they appear closer to one another. Preliminary results on the

development set showed that the former initialization scheme was more robust across

datasets.

Our model has two hyperparameters: the number of k-best derivations considered

by the decoder and the vector β of weights for model integration. Given that we only

interpolate two models whose weights should sum to one, we only need modulate

a single interpolation parameter 0≤ βLM ≤ 1. When βLM is 0, the decoder is only

influenced by the DMV and conversely when βLM is 1 the decoder is only influenced

by the language model. In the general case, we could learn the interpolation parameters

using minimum error rate training (Och, 2003), however this was not necessary in our

experiments. We performed a grid search over k and βLM on held-out data taken from

WEATHERGOV, ROBOCUP, and ATIS, respectively. The optimal values for k and βLM

for the three domains (when evaluating system performance with BLEU-4) are shown

in Table 4.5.

We conducted two different tuning runs, one for a version of our model that only

takes the LM into account (k-BEST-LM; βLM = 1) and another one where the LM and

10Repeated runs with different random noise on the WSJ-10 corpus yielded the same results; accuracy
stabilized around the 60th iteration (out of 100).
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the DMV are integrated (k-BEST-LM-DMV). As can be seen, optimal values for k are

generally larger for k-BEST-LM-DMV. This is probably due to noise introduced by the

DMV; as a result, the decoder has to explore the search space more thoroughly. In an

effort to investigate the impact of the DMV further, we fixed βLM = 0 on the develop-

ment set and performed a grid search with the DMV on its own. Model performance

dropped significantly (by 5–8% BLEU points) which is not entirely surprising given

that the DMV alone cannot guarantee fluent output. Its contribution rather rests on

capturing more global dependencies outwith the local horizon of the language model.

4.4.3 Determining the Output Length

Unlike other generation systems that operate on the surface realization level with word

templates, we emit each word individually in a bottom-up fashion. Therefore, we need

to decide on number of words N we wish to generate before beginning the decoding

process. A common approach is to fix N to the average text length of the training set

(Banko et al., 2000). However, this would not be a good choice in our case, since text

length does not follow a normal distribution. As shown in Figure 4.16 the distribution

of N across domains is mostly skewed.

To avoid making unwarranted assumptions about our output, we trained a linear

regression model that determines the text length individually for each scenario. As

input to the model, we used a flattened version of the database, with features being

record-field pairs. The underlying idea is that if a scenario contains many records and

fields, then we should use more words to express them. In contrast, if the number of

records and fields is small, then it is likely that the output is shorter. In an attempt to

capture the number of words needed to communicate specific record-field pairs, we

experimented with different types of feature values, e.g., by setting a feature to its

actual value (string, categorical or numerical) or its frequency in the training data. The

former scheme worked better in denser datasets, such as WEATHERGOV WINHELP,

and ROBOCUP whereas the latter was adopted in ATIS which has a sparser database,

as a means to smooth out infrequent values. When trained on the training set and tested

on the development set our regression model obtained a correlation coefficient of 0.64

for ROBOCUP, 0.84 for WEATHERGOV, 0.73 for ATIS and 0.91 for WINHELP (using

Pearson’s r)11.

11Note that the correlation coefficient for ROBOCUP is much lower than the rest. Error analysis on the
results revealed that many errors were introduced while rounding off real numbers to integers. This can
be further justified given that the average length (Figure 4.16) is sharply peaked around 5 words, hence
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Figure 4.16: Text length distribution in ROBOCUP, WEATHERGOV, ATIS and

WINHELP (training set).
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4.4.4 System Comparison

We evaluated three configurations of our system: A baseline that uses the top scoring

derivation in each subgeneration (1-BEST) and two versions of our model that make

better use of our decoding algorithm. One version integrates the k-best derivations

with a LM (k-BEST-LM), the other version additionally takes the DMV into account

(k-BEST-LM-DMV). Preliminary experiments with a model that integrates the k-best

derivations with the DMV did not exhibit satisfactory results (see Section 4.4.1) and

we omit them here for the sake of brevity. We compared the output of our models

to Angeli et al. (2010) whose approach is closest to ours and state-of-the-art on the

WEATHERGOV domain.12 We trained their system on ATIS, and WINHELP, using the

most reasonable parameter settings on their model after personal communication with

the authors. We did not introduce further heuristics for the template extraction process

as they report for ROBOCUP and WEATHERGOV as it is less straightforward to pro-

vide patterns for spontaneous speech (ATIS) and longer documents with often unique

content in each document (WINHELP— names of objects, e.g., activex controls may

be accounted for only once in the whole dataset). For ROBOCUP, we also compared

against the best-published results (Kim and Mooney, 2010).

For the human evaluation study we compare two configurations of our systems,

i.e., 1-BEST and k-BEST-LM-DMV along with Angeli’s system and the human text

(HUMAN) as gold-standard. We randomly selected 12 documents from the test set

for each domain and generated output with our models. We thus obtained ratings for

48 (12 × 4) scenario-text pairs for each domain, from a total of 385 volunteers (104

for ROBOCUP, 101 for WEATHERGOV, 100 for ATIS, and 80 for WINHELP). For

WINHELP, we made sure participants were computer-literate and familiar with the

Windows operating system by administering a short questionnaire prior to the experi-

ment. Our experimental instructions are given in Appendix C.

4.5 Results

In this section we show the results of our experiments on all four datasets, ROBOCUP,

WEATHERGOV, ATIS and WINHELP, along with a discussion on example output.

a small deviation due to a truncation error, can decrease the accuracy of the regressor considerably
compared to the rest datasets. WEATHERGOV also scores lower than the rest two datasets, however
looking at the average length distribution reveals a rather irregular pattern, probably not captured in the
best (though satisfactory) way via a linear regression model.

12We are grateful to Gabor Angeli for providing us with the code of his system.
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4.5.1 Automatic Evaluation

System BLEU METEOR

1-BEST 8.01.� 34.29.�

k-BEST-LM 24.88∗ 52.22∗

k-BEST-LM-DMV 23.14∗ 46.90∗.

(a) Joint Content Selection

System BLEU METEOR

1-BEST 10.79.�◦† 27.70.�◦†

k-BEST-LM 30.90∗ 57.77∗

k-BEST-LM-DMV 29.73∗ 58.05∗

ANGELI 28.70∗ –

KIM-MOONEY 47.27∗.�◦ –

(b) Fixed Content Selection

Table 4.6: BLEU-4 and METEOR scores on ROBOCUP (∗: significantly different from

1-BEST; ◦: significantly different from ANGELI; . significantly different from k-BEST-LM;
�: significantly different from k-BEST-LM-DMV; †: significantly different from Kim and

Mooney (2010)).

ROBOCUP Results We conducted two experiments on the ROBOCUP domain. We

first assessed the performance of our generator on joint content selection and surface

realization and obtained the results shown in Table 4.6a. In a second experiment we

forced the generator to use the gold-standard records from the database. This was nec-

essary in order to compare with previous work (Angeli et al., 2010; Kim and Mooney,

2010).13 Our results are summarized in Table 4.6b.

Overall, our generator performs better than the 1-BEST baseline and comparably

to Angeli et al. (2010). k-BEST-LM-DMV is slightly worse than k-BEST-LM. This

is due to the fact that sentences in ROBOCUP are very short (their average length is

5.7 words) and as a result our model cannot recover any meaningful dependencies.

Using the Wilcoxon signed-rank test we find that differences in BLEU and METEOR

scores among k-BEST-LM-DMV, k-BEST-LM and ANGELI are not statistically signif-

13Angeli et al. (2010) and Kim and Mooney (2010) fix content selection both at the record and field
level. We let our generator select the appropriate fields, since these are at most two per record type and
this level of complexity can be easily tackled during decoding.
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System BLEU METEOR

1-BEST 8.64.�◦ 16.35.�◦

k-BEST-LM 33.70∗�◦ 51.47∗◦

k-BEST-LM-DMV 34.18∗.◦ 52.25∗.◦

ANGELI 38.40∗.� 60.50∗.�

Table 4.7: BLEU-4 and METEOR scores WEATHERGOV (∗: significantly different from

1-BEST; ◦: significantly different from ANGELI; . significantly different from k-BEST-LM;
�: significantly different from k-BEST-LM-DMV).

icant (except in the case of joint content selection, where the difference in METEOR

between k-BEST-LM and k-BEST-LM-DMV is significant). Kim and Mooney (2010)

significantly outperform these three models and the 1-BEST baseline (p < 0.01). This

is not entirely surprising, however, as their model requires considerably more supervi-

sion (e.g., during parameter initialization) and includes a post-hoc re-ordering compo-

nent. Finally, we also observe a substantial increase in performance compared to the

joint content selection and surface realization setting. This is expected as the generator

is faced with an easier task and there is less scope for error.

WEATHERGOV Results With regard to WEATHERGOV, our model (k-BEST-LM and

k-BEST-LM-DMV) significantly improves over the 1-BEST baseline (p < 0.01) but lags

behind Angeli et al. (2010) and the difference is statistically significant (p < 0.01).

Since our system emits words based on a language model rather than a template, it

displays more freedom in word order and lexical choice, and thus is likelier to pro-

duce more creative output, sometimes even overly distinct compared to the reference.

Dependencies seem to play a more important role here, yielding overall better per-

formance.14 Interestingly, k-BEST-LM-DMV is significantly better than k-BEST-LM in

this domain (p < 0.01). Sentences in WEATHERGOV are longer than in ROBOCUP

and this allows the k-BEST-LM-DMV to learn dependencies that capture information

complementary to the language model.

14DMV is commonly trained on a sentence-by-sentence basis. In the ROBOCUP and ATIS datasets,
each scenario-text pair corresponds to a single sentence. In WEATHERGOV, however, the text may
include multiple sentences. In the latter case we trained the DMV on the multi-sentence text without
presegmenting it into individual sentences. This non-standard training regime did not seem to pose any
difficulty in this domain, as we can safely assume that all examples have the same elided root head,
namely “weather” (e.g., The weather is mostly cloudy, with a low around 30).
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System BLEU METEOR

1-BEST 11.85.�◦ 32.77.�◦

k-BEST-LM 29.30∗� 43.70∗�

k-BEST-LM-DMV 30.37∗◦ 45.40∗◦

ANGELI 26.77∗� 42.41∗.�

Table 4.8: BLEU-4 and METEOR scores on ATIS (∗: significantly different from 1-BEST;
◦: significantly different from ANGELI; . significantly different from k-BEST-LM; �: sig-

nificantly different from k-BEST-LM-DMV).

System BLEU METEOR

1-BEST 16.02.�◦ 28.02.�◦

k-BEST-LM 38.26∗� 51.32∗◦

k-BEST-LM-DMV 39.03∗◦ 51.68∗◦

ANGELI 32.21∗.� 35.33∗.�

Table 4.9: BLEU-4 and METEOR scores on WINHELP (∗: significantly different from

1-BEST; ◦: significantly different from ANGELI; . significantly different from k-BEST-LM;
�: significantly different from k-BEST-LM-DMV).

ATIS Results The results on ATIS are shown in Table 4.8. As we can see, the

k-BEST-LM-DMV model significantly outperforms the 1-BEST (p < 0.01) and ANGELI

(p < 0.05), whereas k-BEST-LM performs comparably. Furthermore, k-BEST-LM-DMV

is significantly better than k-BEST-LM (p < 0.01). All the differences between the

models are significant in METEOR. The ATIS domain is more challenging than the

previous datasets with respect to surface realization. The vocabulary is larger than

ROBOCUP by a factor of 4.3 and WEATHERGOV by a factor of 2.7. Because of the

increased vocabulary the model learns richer dependencies which improve its fluency

and overall performance.

WINHELP Results Table 4.9 shows the results on the WINHELP domain. Again we

notice that k-BEST-LM-DMV outperforms significantly the 1-BEST (p < 0.01), ANGELI

(p < 0.01) models in terms of BLEU and METEOR scores, and k-BEST-LM (p < 0.01)

in terms of BLEU score. This dataset requires from the generator precise content selec-

tion, since the order of the records plays a crucial role in understanding the generated
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text. Notice for example in Figure 4.19 how the 1-BEST model obscures the under-

standing of the text, when it mentions ‘Click start’ in the middle rather than in the

beginning of the text.
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Figure 4.17: Learning curves for WEATHERGOV displaying how the quality of the

alignments and generated output vary as a function of the size of the training data.

Learning Curves We also examined the amount of training data required by our

model. We performed learning experiments on WEATHERGOV since it contains more

training scenarios than the rest of the domains and is more challenging with regard

to content selection. Figures 4.17(a) and (b) show how the number of training in-

stances influences the quality of the alignment and generation output, respectively. We

measure F1-score for the alignment task and BLEU-4 for the generation output. The
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ROBOCUP WEATHERGOV

System F SC F SC

1-BEST 2.14�†◦ 2.09�†◦ 2.25�†◦ 2.53�†◦

k-BEST-LM-DMV 4.05∗ 3.55∗† 3.89∗ 3.54∗

ANGELI 4.01∗ 3.47∗† 3.82∗ 3.72∗

HUMAN 4.17∗ 3.97∗�◦ 4.01∗ 3.58∗

ATIS WINHELP

System F SC F SC

1-BEST 2.40�†◦ 2.49�†◦ 2.57�†◦ 2.10�†◦

k-BEST-LM-DMV 3.96∗ 3.82∗◦ 3.41∗† 3.05∗†

ANGELI 3.86∗ 3.31∗†� 3.57∗† 2.80∗†

HUMAN 4.16∗ 3.96∗◦ 4.15∗�◦ 4.04∗�◦

Table 4.10: Mean ratings for fluency (F) and semantic correctness (SC) on system

output elicited by humans on ROBOCUP, WEATHERGOV, ATIS and WINHELP (∗: sig-

nificantly different from 1-BEST; ◦: significantly different from ANGELI; �: significantly

different from k-BEST-LM-DMV; †: significantly different from HUMAN).

graphs show that 5,000 scenarios are enough for obtaining reasonable alignments and

generation output. A very small upward trend can be detected with increasing train-

ing instances, however it seems that considerably larger amounts would be required to

obtain noticeable improvements.

4.5.2 Human Evaluation Results

The results of our human evaluation study are shown in Table 4.10. We report mean

ratings for each system and the gold-standard human authored text. Our experimen-

tal participants rated the output on two dimensions, namely fluency (F) and semantic

correctness (SC). We elicited judgements only for k-BEST-LM-DMV as it generally

performed better than k-BEST-LM in our automatic evaluation (see Tables 4.6 -4.9).

We carried out an Analysis of Variance (ANOVA) to examine the effect of system

type (1-BEST, k-BEST-LM-DMV, ANGELI, and HUMAN) on the fluency and seman-

tic correctness ratings. We used Tukey’s Honestly Significant differences (HSD) test,

as explained by (Yandell, 1997) to assess whether mean differences are statistically

significant.

On all four domains our system (k-BEST-LM-DMV) is significantly better than the
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1-BEST baseline (a < 0.01) in terms of fluency. Our output is indistinguishable from

the gold-standard (HUMAN) on ROBOCUP, WEATHERGOV and ATIS (pair-wise dif-

ferences between k-BEST-LM-DMV, and HUMAN are not statistically significant) but

not on WINHELP. Our output is also indistinguishable compared to ANGELI in all

four domains. With respect to semantic correctness, on ROBOCUP, k-BEST-LM-DMV

is significantly better than 1-BEST (a < 0.01) but significantly worse than HUMAN

(a < 0.01). Although the ratings for k-BEST-LM-DMV are numerically higher than

ANGELI, the difference is not statistically significant. ANGELI is also significantly

worse than HUMAN (a < 0.01). On WEATHERGOV, the semantic correctness of k-

BEST-LM-DMV and ANGELI is not significantly different. These two systems are

also indistinguishable from HUMAN. On ATIS, k-BEST-LM-DMV is the best per-

forming model with respect to semantic correctness. It is significantly better than

1-BEST and ANGELI (a < 0.01) but not significantly different from HUMAN. Finally,

on WINHELP the difference on semantic correctness between k-BEST-LM-DMV and

ANGELI is not significant, even though our model scores higher; both are also signifi-

cantly worse than HUMAN.

4.5.3 System Output

Examples of system output with correct content selection at the record level are given

in Figures 4.18-4.19. Note that in the case of ROBOCUP, content selection is fixed

to the gold standard. As can be seen, the generated text is close to the human au-

thored text. Also note that the output of our system improves considerably when

taking k-best derivations into account (compare 1-BEST and k-BEST-LM-DMV in the

figure). Figure 4.20a shows examples with incorrect content selection at the record

level for the WEATHERGOV domain. Figure 4.20a shows the gold standard content

selection and its corresponding verbalization. Figures 4.20b and 4.20c show the output

of the k-BEST-LM-DMV system and ANGELI. Tables in black denote record selec-

tion identical to the gold standard, whereas tables in grey denote false positive recall.

k-BEST-LM-DMV identifies an incorrect value for the mode field in the Chance of Rain
record; in addition, it fails to select the Precipitation Potential (%) record altogether.

The former mistake does not affect the correctness of the generator’s output, whereas

the latter does (i.e., it fails to mention the exact likelihood of rain, 40% in the gold

standard and 35% in ANGELI’s output). Finally, Figure 4.21 shows the dependency

structure our model produced for the sentence Show me the flights from Milwaukee
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Input:

Bad Pass

From To

pink11 purple5

1-BEST: pink11 pass purple5 purple5 pink11 pass purple5 purple5 purple5

k-BEST-LM-DMV: pink11 made a pass that was intercepted by purple5

ANGELI: pink11 made a bad pass that missed its target and was picked up

by purple5

HUMAN: pink11 tries to pass but was intercepted by purple5

(a) ROBOCUP

Input:

Temperature

Time Min Mean Max

06-21 32 39 46

Wind Speed

Time Min Mean Max

06-21 6 7 10

Cloud Sky Cover

Time Percent (%)

06-21 75-100

Wind Direction

Time Mode

06-21 SE

1-BEST: Near 46. Near 46. Near 46. Near 46. Near 46. With near 46.

Southeast wind.

k-BEST-LM-DMV: Mostly cloudy, with a high near 46. South southeast wind be-

tween 6 and 10 mph.

ANGELI: A chance of rain or drizzle, with a high near 46. Southeast wind

between 6 and 10 mph. mph. Chance of precipitation is 60%.

HUMAN: Mostly cloudy, with a high near 46. South southeast wind be-

tween 6 and 10 mph.

(b) WEATHERGOV

Input:

Flight

from to

milwaukee phoenix

Day

day dep/ar/ret

saturday departure

Search

type what

query flight

1-BEST: Milwaukee Phoenix on Saturday on Saturday on Saturday

k-BEST-LM-DMV: Show me the flights from Milwuakee to Phoenix on Saturday

ANGELI: Show me the flights between Milwuakee and Phoenix on Saturday

HUMAN: Milwuakee to Phoenix on Saturday

(c) ATIS

Figure 4.18: Example output on (a) sportscasting, (b) weather forecasting, and (c) air

travel domains with correct content selection.
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Input:

navigate-desktop

envCmd objName type

left click start button

navigate-start

envCmd objName type

left click settings button

navigate-start-target

envCmd objName type

left click control panel button

navigate-window-target

envCmd objName type

double click system item

navigate-window-target

envCmd objName type

left click hardware tab

action-contextMenu

envCmd objName type typeInto

left click device manager button –

1-BEST: Select settings, click control panel. Click control panel. Double-

click system. Click start, click device manager.

k-BEST-

LM-DMV:

Click start, point to settings, and then click control panel. Double-

click system. Click the hardware tab, click device manager.

ANGELI: Click start , point to settings, and then click control panel.

Double-click system. Click modems, and then click hardware.

HUMAN: Click start, point to settings, click control panel, and then double-

click system. On the hardware tab, click device manager.

Figure 4.19: Example output on the troubleshooting guide domain with correct content

selection.
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Gold:

Temperature

Time Min Mean Max

06-21 30 38 44

Wind Speed

Time Min Mean Max

06-21 6 6 7

Cloud Sky Cover

Time Percent (%)

06-21 75-100

Wind Direction

Time Mode

06-21 ENE

Precipitation Potential

Time Min Mean Max

06-21 9 20 35

Chance of Rain

Time Mode

06-21 Slight Chance

Output: A 40 percent chance of showers before 10am. Mostly cloudy, with a

high near 44. East northeast wind around 7 mph.

(a) Gold standard content selection and its verbalization

Content

Selection:

Temperature

Time Min Mean Max

06-21 30 38 44

Wind Speed

Time Min Mean Max

06-21 6 6 7

Cloud Sky Cover

Time Percent (%)

06-21 75-100

Wind Direction

Time Mode

06-21 ENE

Chance of Thunderstorm

Time Mode

06-13 –

13-21 –

Chance of Rain

Time Mode

06-09 Chance

Output: A chance of showers. Patchy fog before noon. Mostly cloudy, with a

high near 44. East wind between 6 and 7 mph.

(b) k-BEST-LM-DMV content selection

Content

Selection:

Temperature

Time Min Mean Max

06-21 30 38 44

Wind Speed

Time Min Mean Max

06-21 6 6 7

Wind Direction

Time Mode

06-21 ENE

Precipitation Potential

Time Min Mean Max

06-21 9 20 35

Chance of Thunderstorm

Time Mode

06-21 –

Chance of Rain

Time Mode

06-09 Chance

Output:
A chance of showers. Patchy fog before noon. Mostly cloudy, with

a high near 44. East wind between 6 and 7 mph. Chance of precipi-

tation is 35%

(c) ANGELI content selection

Figure 4.20: Example output on WEATHERGOV domain with incorrect content selec-

tion (in gray).
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ROOT

on

on

on

on

Saturdayon

from

Phoenix

Phoenix

PhoenixtoMilwaukeefromflights

show

me

themeshow

Figure 4.21: Dependency structure for the sentence Show me the flights from Mil-

waukee to Phoenix on Sunday as generated by k-BEST-LM-DMV (see Figure 4.18c).

Intermediate nodes in the tree denote the head words of each subtree.

to Phoenix on Saturday from Figure 4.18c; notice the long range dependency between

flights and on, which would otherwise be inaccessible to a language model.

4.6 Discussion

In sum, we observe that performance improves when k-best derivations are taken into

account (the 1-BEST system is consistently worse). Our results also show that taking

dependency-based information into account boosts model performance over and above

what can be achieved with a language model. Our model is on par with ANGELI

on ROBOCUP and WEATHERGOV but performs better on ATIS and WINHELP when

evaluated both automatically and by humans (on ATIS). Error analysis suggests that

a reason for ANGELI’s poorer performance on ATIS might be its inability to create

good quality surface templates. This is due to the lack of sufficient data and the fact

that templates cannot fully express the same database configurations in many different

ways. This is especially true for ATIS which consists of transcriptions of spontaneous

spoken utterances and the same meaning can be rendered in many different ways. For

example, the phrases “show me the flights”, “what are the flights”, “which flights”,

and “please can you give me the flights”, all convey the exact same meaning stemming

from a Search record. In the WINHELP domain what is suggested by the generated



92 Chapter 4. Joint Model of Generation

output, is a frequent inconsistency between the acquired lexicon and the values of the

fields of the database records. This is also illustrated in Figure 4.19; notice how the

value hardware is lexicalised as ‘modem’.

Our model learns domain specific conventions about “how to say” and “what to

say” from data, without any hand-engineering or manual annotation. Porting the sys-

tem to a different domain is straightforward, assuming a database and corresponding

(unaligned) text. As long as the database obeys the structure of the grammar GGEN , we

need only retrain the model to obtain the weights of the grammar rules; in addition, the

system requires a domain specific language model and optionally information about

heads and their dependants which the DMV learns in an unsupervised fashion. In the

latter case, we also need to tune the hyperparameter βLM, and in both cases k, i.e., the

size of the list of derivations we need to keep at each node. Note, that fine-tuning k

becomes less important when integrating with a language model only. As we explain

in Section 4.4.1, the DMV possibly introduces noise, therefore we have to modulate k

more carefully so as to allow the decoder to search in a bigger space.

Obtaining rule weights for our model in an unsupervised fashion using EM, is not

of course the only way to train our grammar. We could use a supervised approach such

as a log-linear model to train our model either in a fully discriminative setting (Chi-

ang, 2007) or during the M-step similar to Berg-Kirkpatrick et al. (2010). In both cases

however, we would need some form of supervision either in the form of alignments or

features. For the former we can directly use the gold-standard or we may obtain them

using a supervised alignment model (Snyder and Barzilay, 2007). For the features we

can use knowledge directly from the text, such as text length, number of sentences,

syntactic features, as well as from the database, such as patterns of records, and fields.

Increasing the performance of the generation of alignments via better training of the

rule weights of our model, will inevitably increase the quality of the generated output,

hence the overall performance of our generator. Recall though that most domains do

not contain annotation in the form of alignments; obtaining them manually in order to

train a supervised model can be expensive. Creating in-domain features based on evi-

dence from the document or the database, still requires human intervention. Therefore

we regard the tradeoff between unsupervised training of our model and performance

as a reasonable solution especially for domains with no annotation.
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4.7 Summary

In this chapter we presented a joint model for content selection, sentence planning, and

surface realisation. The key idea was to recast generation as a parsing problem. We

achieved this by introducing a PCFG grammar that naturally captures the correspon-

dence between the database schema and the text. Beginning at the root non-terminal

symbol, we first defined a set of rewrite rules that describe a sequence of records; then

for each record we defined another a similar set of rules that emit a sequence of fields.

Finally, for each field value we included a set of lexicalisation rules that emit words.

The grammar is purely syntactic and does not relate to a specific domain. We then

proposed several models to parse an input database and our PCFG in order to generate

text, via integration with a language model and a dependency model. We also pro-

vided an implementation of our generators using the hypergraph framework. Finally,

we concluded with an extensive evaluation of our systems across the four domains pre-

sented in Chapter 3. We achieved performance comparable or superior compared to

the state-of-the-art system of Angeli et al. (2010). However, our models lag behind the

system of Kim and Mooney (2010) on ROBOCUP, possibly due to the latter relying on

more supervision during training and decoding. The output of our models was seman-

tically compatible and often indistinguishable from the gold-standard text, according

to human judges. More importantly our models learnt domain specific decisions on

“what to say” and “how to say” from data, without any hand-engineering or manual

annotation. Given a database input and collocated text, we argue that our systems can

easily port to a different domain.





Chapter 5

Integrating Document Planning

The grammar we defined in the previous chapter captures both the structure of the

input database and the way it renders into natural language. This approach lends itself

well to the incorporation of content planning, which has traditionally assumed tree-like

representations. In this chapter, we will look at augmenting the original grammar GGEN

with an additional context-free sub-grammar GDP which performs document planning.

We formulate GDP so that it identifies sentences in a document, and captures the inter-

and intra-relations of records in them. Importantly, we do not specify this grammar

manually but obtain it automatically from training data. In the following we present

the extensions on the original grammar, a procedure for extracting rules for GDP, and

a modified training scheme. We evaluate the extended model on two datasets, namely

WEATHERGOV and WINHELP.

5.1 Motivation

Content planning is a fundamental component in a natural generation system. Not

only does it determine which information-bearing units to talk about, but also arranges

them into a structure that creates coherent output. It is therefore not surprising that

many content planners, as we saw earlier in chapter 2, have been based on theories

of discourse coherence (Hovy, 1993; Scott and de Souza, 1990). Other work has re-

lied on generic planners (Dale, 1988) or schemas (Duboue and McKeown, 2002). In

all cases, content plans are created manually, sometimes through corpus analysis. A

few researchers recognize that this top-down approach to planning is too inflexible

and adopt a generate-and-rank architecture instead (Mellish et al., 1998; Karamanis,

2003; Kibble and Power, 2004). The idea is to produce a large set of candidate plans

95
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and select the best one according to a ranking function. The latter is typically devel-

oped manually taking into account constraints relating to discourse coherence and the

semantics of the domain.

The first statistical approaches to induce document plans are the work of Duboue

and McKeown (2001) and Duboue and McKeown (2002), that model content plan-

ning using methods borrowed from computational biology, presented in Section 2.3.1.

More recent data-driven work mentioned in Chapter 2 (Kim and Mooney, 2010; An-

geli et al., 2010) focuses on end-to-end systems rather than individual components,

however without taking document planning into account.

The model we presented in the previous chapter optimises the choice of records,

fields and words simultaneously; however, it still selects and orders records locally.

In the following we will extend our model by replacing the existing content selection

mechanism (based on a simple markovized chaining of records) with a more global

representation of the document. A document plan is identified as a sequence of sen-

tences, and each sentence contains a sequence of records. Unlike in the original model,

the choice and ordering of records is performed globally, and is not merely based on

the previous record choice.

5.2 Grammar Extensions

We propose replacing rules (1)–(2) from grammar GGEN in Figure 4.1 with the follow-

ing:

Definition 8 (GDP grammar)
1. D→ SENT(ti, . . . , t j) . . . SENT(tl, . . . , tm)

2. SENT(ti, . . . , t j)→ R(ra.ti) . . . R(rk.t j) ·

where t is a record type, ti, t j, tl and tm may overlap and ra, rk are record tokens of type

ti and t j respectively. The corresponding weights are:

Definition 9 (GDP weights)
1. P(ti, . . . , t j, . . . tl, . . . , tm | D)

2. P(ti) · ... ·P(t j) =
1
|s(ti)| · . . . ·

1
|s(t j)|

where s(t) is the function that returns the set of records with type t, defined in

Section 4.1. The resulting grammar GGEN++ is given in Table 5.1. The rules in Defini-

tion 8 essentially describe a document grammar on record types. We split a document
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GDP 1. D→ SENT(ti, . . . , t j) . . . SENT(tl, . . . , tm)[
P(ti, . . . , t j, . . . tl, . . . , tm | D)

]
2. SENT(ti, . . . , t j)→ R(ra.ti) . . . R(rk.t j) ·

[
1
|s(ti)| · . . . ·

1
|s(t j)|

]
GCS 3. R(ri.t)→ FS(r j,start) [Pr = 1]

4. FS(r,r. fi)→ F(r,r. f j) FS(r,r. f j) [P( f j | fi)]

5. FS(r,r. fi)→ F(r,r. f j) [P( f j | fi)]

6. F(r,r. f )→W(r,r. f ) F(r,r. f ) [P(w |w−1,r,r. f )]

7. F(r,r. f )→W(r,r. f ) [P(w |w−1,r,r. f )]

GSURF 8. W(r,r. f )→ α [P(α |r,r. f , f .t, f .v, f .t = {cat,null})]

9. W(r,r. f )→ gen( f .v) [P(gen( f .v).mode |r,r. f , f .t = int)·
P( f .v |gen( f .v).mode)]

10. W(r,r. f )→ gen str( f .v, i) [Pr = 1]

Table 5.1: Grammar rules for GGEN++ and their weights shown in square brackets.

into sentences, each terminated by a full-stop. Then a sentence is further split into a

sequence of record types. Contrary to the original model, we observe at the root node

D a complete sequence1 of record types, split into sentences. This way we aim to

learn domain-specific patterns of frequently occurring record type sequences among

the sentences of a document, as well as more local structures inside a sentence.

Rule (1) defines the expansion from the start symbol D to a sequence of sentences,

each represented by the non-terminal SENT . Similarly to the original grammar GGEN ,

we employ the use of features (shown in parentheses) to denote a sequence of record

types. We assume that the same record types may recur in different sentences, but not

in the same one. The weight of rule (2) is simply the joint probability of all the record

types present, ordered and segmented appropriately into sentences in the document,

given the start symbol.

1Note that a sequence is different from a permutation, as we may allow repetitions or omissions of
certain record types.
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Once record types have been selected (on a per sentence basis) we move on to

rule (2) which describes how each non-terminal SENT expands to an ordered sequence

of records R, as they are observed within a sentence (note the terminal symbol ‘.’ at

the end of the rule). Notice that a record type ti may correspond to several record

tokens ra. Rules (4)–(8) in grammar G make decisions on these tokens based on the

overall content of the database and the field/value selection. The weight of this rule is

the product of the weights of each record type. This is set to the uniform distribution

over {1, ..., |s(t)|} for record type t, where |s(t)| is the number of records with that

type.

Figure 5.2b shows an example tree of the database input of Figure 3.6, using the

rules of GDP, assuming that the alignments between records and text are given. The

top level span refers to the sequence of record types as they are observed in the text.

The first sentence contains three records with types ‘desktop’, ‘start’ and ‘start-target’,

each corresponding to the textual segments click start , point to settings , and then click

control panel. The next level on the tree denotes the choice of record tokens for each

sentence, provided that we have decided on the choice and order of their types. In the

example, the bottom-left sub-tree corresponds to the choice of the first three records of

Figure 3.6.

5.3 Model Training

A straightforward way to train the extended model would be to embed the parameters

of GDP in the original model and then run the EM algorithm using inside-outside at

the E-step. We would first need to binarize the two extra rules, in order to keep the

cubic runtime bound of the algorithm (see Figures 5.1c, 5.2c). Unfortunately, this

method will induce a prohibitively large search space. Rule (1) enumerates all possible

combinations of record type sequences and the number grows exponentially even for

a few record types and a small sequence size. To tackle this problem, we extracted

rules for GDP from the training data, based on the assumption that there will be far

fewer unique sequences of record types per dataset than exhaustively enumerating all

possibilities. Our extraction process proceeds as follows:

• For each scenario we obtain a word-by-word alignment between the database

records and the corresponding text. In our experiments we adopted the method

we used for the alignment task described in Section 3.3.1, similar to Liang et

al.’s (2009) unsupervised model. However any other semi- or fully supervised
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rainChance1 thunderChance1

Showers and thunderstorms .

temperature1

High near 70 .

skyCover1

Cloudy ,

windDir1 windSpeed1

with a south wind around 20mph ,

gust1

with gusts as high as 40mph .

precipPotential1

Chance of precipitations is 100% .

[ rainChance thunderChance ‖ temperature ‖ skyCover windDir windSpeed gust ‖
precipPotential ‖

]
(a) Record token alignments and record type segmentation

D

SENT(prPot)

R(prPot1.t)

SENT(sc, wDir, wSpd, gust)

R(gust1.t)R(wSpd1.t)R(wDir1.t)R(sc1.t)

SENT(temp)

R(temp1.t)

SENT(rChc, tChc)

R(tChc1.t)R(rChc1.t)

(b) GDP grammar

D

[SENT(temp)-SENT(sc, wDir, wSpd, gust)-SENT(prPot)]

[SENT(sc, wDir, wSpd, gust)-SENT(prPot)]

SENT(prPot)

R(prPot1.t)

SENT(sc, wDir, wSpd, gust)

[@(wDir, wSpd, gust)]

[@(wSpd, gust)]

R(gust1.t)R(wSpd1.t)

R(wDir1.t)

R(sc1.t)

SENT(temp)

R(temp1.t)

SENT(rChc, tChc)

R(tChc1.t)R(rChc1.t)

(c) Binarized GDP grammar

Figure 5.1: Grammar extraction example from the WEATHERGOV domain. We use

rChc as a shorthand for the record type Rain Chance, tChc for Thunder Chance,

temp for Temperature, sc for Sky Cover, wDir for Wind Direction, wSpd for Wind
Speed and prPot for Precipitation Potential. (a) We first take the alignments of records

on words, map them to their corresponding types and segment into sentences. (b) We

next create a tree using grammar GDP and (c) right-binarize it.



100 Chapter 5. Integrating Document Planning

desktop1

click start ,

start1

point to settings ,

start-target1

and then click control panel .

window-target1

double-click users and passwords .

contextMenu1

on the advanced tab ,

action-contextMenu1

click advanced .

[
desktop start start-target ‖ window-target ‖ contextMenu action-contextMenu ‖

]
(a) Record token alignments and record type segmentation

D

SENT(contMenu, action-contMenu)

R(action-contMenu1.t)R(contMenu1.t)

SENT(win-target)

R(win-target1.t)

SENT(desk, start, start-target)

R(start-target1.t)R(start1.t)R(desk1.t)

(b) GDP grammar

D

[SENT(win-target)-SENT(contMenu, action-contMenu)]

SENT(contMenu, action-contMenu)

R(action-contMenu1.t)R(contMenu1.t)

SENT(win-target)

R(win-target1.t)

SENT(desk, start, start-target)

SENT(start, start-target)

R(start-target1.t)R(start1.t)

R(desk1.t)

(c) Binarized GDP grammar

Figure 5.2: Grammar extraction example from the WINHELP domain: (a) We first take

the alignments of records on words, map them to their corresponding types and seg-

ment into sentences. (b) We next create a tree using grammar GDP and (c) right-

binarize it.
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method could be used instead. As we show in Section 5.5, the quality of the

alignment inevitably correlates with the quality of the extracted grammar and

the decoder’s output.

• Then we map the aligned record tokens to their corresponding types, merge ad-

jacent words with the same type and segment on punctuation (see Figure 5.2a).

• Next, we create the corresponding tree according to the GDP and binarize it (Fig-

ures 5.1b–5.1c, 5.2b–5.2c) We experimented both with left and right binarization

and adhered to the latter, as it obtained a more compact set of rules.

• Finally, we collectively count the rule weights on the resulting treebank and

extract a rule set, by keeping the rules with frequency greater than two.

Returning to the model, we run the EM algorithm via inside-outside using the ex-

tracted GDP rules in order to build the hypergraph for each scenario, and learn the

weights for the remaining rules (3–10), as described in Section 4.4.1. Decoding re-

mains the same as described in the previous chapter; the only requirement is that the

extracted grammar remains binarized in order to guarantee the cubic bound of the

Viterbi search algorithm.

5.4 Experiments

Since our aim is to evaluate the planning component of the new model, we used

datasets whose documents are at least a few sentences long, hence we experimented

only on WEATHERGOV and WINHELP. In the following we describe the particu-

lars of extracting the grammar rules for GDP for the two domains and the evaluation

methodology we followed, which departs slightly from the experiments described in

the previous chapter.

5.4.1 Grammar Extraction

We obtained alignments between database records and textual segments for both do-

mains using the original grammar GGEN to perform alignment, as described in Sec-

tion 3.3.1, similar to the unsupervised model of Liang et al. (2009). For WEATHERGOV,

we then extracted 663 rules (after binarization), 344 of which were rooted on the start

symbol D.
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S

〈S. . .B〉

〈S. . .C〉

〈S. . .D〉

E

D

C

B

Figure 5.3: Horizontal markovisation of the rule S→ B C D E.

The WINHELP dataset is considerably smaller, and as a result following the pro-

cedure described above in Section 5.3 yields a very sparse grammar, with too many

low-frequency rules. To alleviate this, we use the paradigm of Markov chains to de-

compose long rules to a chain of binary subrules. Based on Collins (1999) we hor-

izontally markovised the right-hand side (RHS) of each grammar rule. We can en-

code an arbitrary amount of context in the intermediate non-terminals that result from

this process; in our case we store h=1 horizontal siblings plus the mother left-hand

side (LHS) non-terminal, in order to uniquely identify the Markov chain. For exam-

ple, given a rule S→ B C D E we can transform it into a first-order Markov model

as shown in Figure 5.3. The probability score decomposes into: P(B,C,D,E|S) =
P(B|S) P(C|B,S) P(D|C,S) P(E|D,S). After markovisation, we obtained a grammar

with 516 rules; 60 rules were rooted on D. Examples of extracted rules for both do-

mains are given in Appendix B.

5.4.2 Training External Models

We estimated the two hyperparameters of the model, namely the number of k-best

derivations considered by the decoder and βLM, the vector of weights for integrating

the language model and DMV, by performing grid search on held-out data of the de-

velopment set for each domain. Table 5.2 shows the optimal values for k and βLM.

DP-UNSUP and DP-AUTO are two different configurations of our model defined in

Section 5.4.3.
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Dataset k βLM

WEATHERGOV 75 0.9

WINHELP 120 0.5

(a) DP-UNSUP

Dataset k βLM

WEATHERGOV 80 0.3

WINHELP 120 0.5

(b) DP-AUTO

Table 5.2: Optimal values for parameters k and βLM calculated by performing grid

search against BLEU-4 on the development set, using the GGEN++ grammar. The

two tables correspond to the different configurations of our model, one with extracted

rules for the sub-grammar GDP from unsupervised alignments, and the other from au-

tomatically extracted alignments using hand-crafted heuristics, respectively.

5.4.3 System Comparison

We evaluated two configurations of the new model, both of which integrate with a

language model and the DMV. The first configuration DP-UNSUP uses our grammar

extracted from the unsupervised alignments. In the second configuration, the grammar

is extracted from better quality alignments, the latter also obtained automatically but

relying on human-crafted alignment heuristics which are based on domain knowledge,

as described in Sections 3.2.2 and 3.2.4 (DP-AUTO). As a baseline, we used the model

presented in the previous chapter using grammar GGEN . We also compared our model

to Angeli et al.’s system (2010).

Our evaluation methodology is the same as in Chapter 4; we use BLEU and ME-

TEOR to automatically evaluate the output of our system, and elicited a human eval-

uation study. Since our aim is to measure the impact of the document planning com-

ponent on the new model, we extended our human evaluation study by adding a third

dimension besides fluency and semantic correctness. Participants were asked to rate

our output in terms of coherence (is the text comprehensible and logically structured?).

We used again a five point rating scale for coherence, with high values corresponding

to better performance. Our experimental instructions are given in Appendix C. We

compared the new model DP-UNSUP with the extracted grammar from unsupervised

data, and the k-BEST-LM-DMV using the original grammar GGEN against Angeli et al.

(2010) and the human text. We obtained ratings for 48 (12 × 4) scenario-text pairs for

the two domains, from a total of 160 volunteers (80 for WEATHERGOV, and 80 for

WINHELP).
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WEATHERGOV WINHELP

System BLEU METEOR BLEU METEOR

DP-UNSUP 36.41∗◦† 55.73∗◦† 41.73∗◦ 54.74∗◦

DP-AUTO 39.00∗◦� 58.55∗◦� 42.69∗◦ 55.45∗◦

k-BEST-LM-DMV 34.18◦�† 52.25◦�† 39.03◦�† 51.68◦�†

ANGELI 38.40∗�† 60.50∗�† 32.21∗�† 35.33∗�†

Table 5.3: Automatic evaluation of system output using BLEU-4 and METEOR. (∗: sig-

nificantly different from k-BEST-LM-DMV; ◦: significantly different from ANGELI; �: sig-

nificantly different from DP-UNSUP; †: significantly different from DP-AUTO).

5.5 Results

The results of the automatic evaluation are summarized in Table 5.3. Overall, the new

models outperform the baseline k-BEST-LM-DMV by a wide margin on both datasets.

DP-AUTO is superior to DP-UNSUP (on WEATHERGOV the difference is statistically

significant) and ANGELI on WINHELP, while on WEATHERGOV in terms of BLEU

only. This is not entirely unexpected, given the better quality of the extracted rules.

On WEATHERGOV this difference is more pronounced. This is probably because the

dataset shows more structural variations in the choice of record types at the document

level, and therefore the grammar extracted from the unsupervised alignments is noisier.

On WINHELP, ANGELI performs poorly, probably due to lack of domain-specific cal-

ibration; see the error analysis discussion in Section 4.5.2. Finally, we notice a slight

anomaly in METEOR on WEATHERGOV; contrary to the trend present in the rest re-

sults, it does not correlate with BLEU when comparing DP-AUTO to ANGELI. This

is probably because unlike BLEU, METEOR takes into account unigram recall, hence

ANGELI might be recovering more words present in the gold standard text compared

to our model. This results in scoring higher in METEOR but lower in BLEU.

The results of our human evaluation study are shown in Table 5.4. Similarly to the

previous experiment described in Section 4.5.2, we carried out an Analysis of Vari-

ance (ANOVA) to examine the effect of system type, (DP-UNSUP, k-BEST-LM-DMV,

ANGELI, and HUMAN) on fluency, semantic correctness and coherence ratings. Mean

differences of 0.2 or more are significant at the 0.05 level using a post-hoc Tukey test.

Interestingly, we observe that document planning improves system output overall, not

only in terms of coherence. Across all dimensions DP-UNSUP is perceived better than
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WEATHERGOV WINHELP

Model F SC C F SC C

k-BEST-LM-DMV 3.66◦†� 3.34◦†� 3.56◦†� 3.27† 2.97† 2.93†�

DP-UNSUP 4.09∗ 3.62∗ 4.00∗◦ 3.46† 3.01◦† 3.34∗◦†

ANGELI 3.93∗ 3.58∗ 3.80∗�† 3.44† 2.79†� 2.97∗†�

HUMAN 4.08∗ 3.65∗ 4.02∗◦ 4.20∗◦� 4.03∗◦� 4.00∗◦�

Table 5.4: Mean ratings for fluency (F), semantic correctness (SC) and coherence (C)

on system output elicited by humans. (∗: significantly different from k-BEST-LM-DMV;
◦: significantly different from ANGELI; �: significantly different from DP-UNSUP; †: sig-

nificantly different from HUMAN).

k-BEST-LM-DMVand ANGELI. As far as coherence is concerned, DP-UNSUP per-

forms best overall, on both domains and the differences in means between the compar-

ison systems (ANGELI and k-BEST-LM-DMV) are significant.

5.5.1 System Output

Figures 5.4-5.5 illustrate examples of system output along with the gold standard con-

tent selection for reference, for the WEATHERGOV and WINHELP domain, respec-

tively. In general, both k-BEST-LM-DMV and DP-UNSUP closely resemble the human

output, in terms of fluency and coherence. They might differ in the verbalisation of the

input (e.g., ‘Showers before noon’, versus ‘A chance of showers’, but without causing

significant harm to the final output. However, DP-UNSUP makes better decisions at

the content level.

For example, on WEATHERGOV in Figure 5.4, notice that k-BEST-LM-DMV does

not select the record Precipitation Potential, hence there is no mention in the text,

unlike DP-UNSUP (and ANGELI) which render it as ‘Chance of precipitation is 50%’.

Closer error analysis between the two models revealed a particularly strong trend in

chosing different sequences of records. In particular we examined several scenarios

from the test set that mention in the human text chance of rain or thunderstorms.

These usually correlate with high integer values on the fields of Precipitation Po-
tential record, and values such as Chc or Def on the mode fields of Rain Chance and

Thunderstorm Chance records.

Even without much expert domain knowledge one realises that if these two records

are salient in the database, they should be selected by the model and get mentioned in
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Input:

Temperature

Time Min Mean Max

06-21 32 35 38

Wind Speed

Time Min Mean Max

06-21 3 5 8

Cloud Sky Cover

Time Percent (%)

06-21 75-100

Rain Chance

Time Mode

06-21 Chc

Wind Direction

Time Mode

06-21 SW

Precipitation Potential

Time Min Mean Max

06-21 31 43 52

DP-UNSUP: Showers before noon. Cloudy, with a high near 38. Southwest

wind between 3 and 8 mph. Chance of precipitation is 50 %.

k-BEST-LM-DMV: A chance of showers. Otherwise, cloudy, with a high near 38.

Southwest wind between 3 and 8 mph.

ANGELI: A chance of rain or drizzle after 9am. Mostly cloudy, with a high

near 38. Southwest wind between 3 and 8 mph. Chance of pre-

cipitation is 50 %

HUMAN: A 50 percent chance of showers. Cloudy, with a high near 38.

Southwest wind between 3 and 6 mph.

Figure 5.4: Example system output and gold standard content selection on

WEATHERGOV.

the text. In the case of k-BEST-LM-DMV we found that most of the times it correctly

selected the first record of the document (usually Rain Chance or Thunderstorm
Chance), but often missed the Precipitation Potential record in the middle or in the

end of the document. This inconsistency is probably due to the locality of the HMM;

the model has great confidence of selecting a rain-related event in the beginning of

the document, but inevitably loses track of this mention further ahead in the record

Markov chain. Examination of the derivation trees for the document planning rules

extracted by DP-UNSUP, reveals a considerable consensus of the document plan tree

shown in Figure 5.6a. Notice how the long range dependency between the first Rain
Chance record and the final Precipitation Potential record is preserved, regardless of

the number of records between them.

A similar picture emerges for the WINHELP domain, (see an example of sys-

tem output in Figure 5.5). As we have previously mentioned, the order of selecting

records in this domain is crucial for the coherence of the final output. Notice how

k-BEST-LM-DMV omits completely the navigate-window-target record (it should be
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Input:

(1) navigate-desktop

envCmd objName type

right click my network places item

(2) navigate-desktop-target

envCmd objName type

left click properties menu

(3) navigate-window

envCmd objName type

right click local area item

connection

(4) navigate-window-target

envCmd objName type

left click properties menu

(5) action-contextMenu

envCmd objName type typeInto

left click file and printer sharing checkbox –

for microsoft networks

(6) exit-contextMenu

envCmd objName type

left click ok button

DP-UNSUP: Right-click my network places, and then click properties. Right-

click local area connection, and click properties. Click to select

the file and printer sharing for Microsoft networks, and then click

ok.
k-BEST-LM-DMV: Right-click my network places, click properties. Right-click local

area connection. Click to select the file and printer sharing for

Microsoft networks, and then click ok.
ANGELI: Right-click my network places, and then click properties on the

tools menu, and then click properties. Right-click local area con-

nection, and then click properties. Click file and printer sharing

for Microsoft networks, and then click ok.
HUMAN: Right-click my network places, and then click properties. Right-

click local area connection, and then click properties. Click to

select the file and printer sharing for Microsoft networks check

box. Click ok.

Figure 5.5: Example system output and gold standard content selection on WINHELP.

Numbers in the records indicate the correct order they should be selected by the docu-

ment plan and then mentioned in the text.
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mentioned after the phrase ‘Right-click local area connection’), or ANGELI emits twice

the navigate-desktop-target record with some unexplained lexicalisation noise (‘and

then click properties on the tools menu, and then click properties’; there is no semantic

evidence in the database for the word ‘tools’). In contrast, DP-UNSUP mentions all

records in the correct order, thus retaining the meaning of the document intact.

We performed an error analysis on this domain as well, but no clear conclusions

can be drawn mostly due to the small size of the dataset. One possible explanation

for why k-BEST-LM-DMV randomly omits records, is due to sparsity. Some records

are infrequent (e.g., the navigate-program record appears only seven times in the cor-

pus), therefore the model does not have a well-informed distribution for the emission

of those. Of course, DP-UNSUP faces the same problem, since the weights of the

extracted rules of GDP are also inferred from the corpus in a frequentist approach2.

However, by looking at the derivation trees produced by the Viterbi search algorithm,

there is some evidence of learning document plans containing plausible sequences such

as those shown in Figure 5.6b. The first tree possibly captures the regular pattern of

navigating on the desktop in order to find an icon, then clicking on it and then per-

forming some navigation and action on the window that popped up. In the second

tree we observe a pattern of navigating first on the start menu and then selecting an

item. In particular, notice the chaining of two navigate-contextMenu records before

the corresponding -target record; this is outwith the expressive power of an HMM.

5.6 Discussion

In summary, we observe that integrating document planning via GDP boosts perfor-

mance. The extended models are consistently better than k-BEST-LM-DMV both in

terms of automatic and human evaluation and are close or better than the supervised

model of Angeli et al. (2010). The trained grammar produces document plans in the

form of derivation trees that capture longer dependencies between records, which can-

not be represented by a simple Markov chain, as in the model of Chapter 4. GDP

unavoidably introduces a lot of expressivity into the model in terms of exponentially

many potential rules. We presented a simple way to overcome this problem, by obtain-

ing the most frequent rules from the dataset, provided we have access to alignments

2We estimate rule weights based on evidence found in the data, by merely counting frequencies
of rules and then normalising the counts (frequentist approach). An alternative would be to adopt a
Bayesian approach in estimating the grammar rules (e.g., using a Variational method (Johnson, 2007)).
However, we leave this to future work.
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between the database and text. We can generate alignments in an unsupervised manner

as shown in Section 3.3.1. We also showed that feeding the system with a grammar of

better quality (via more refined alignments) can achieve state-of-the-art performance,

without further changes to the model.

GDP grammar is not the only way to define document plans of database records.

An alternative would be to automatically induce a grammar using an existing grammar

induction model such as the generative constituent-context model (CCM) of Klein and

Manning (2002). Given a sequence of records for each scenario as an input string

(Figure 5.7a) (obtained as explained in Section 5.3), we can induce an (unlabelled)

bracketed tree structure, like the one shown in Figure 5.7b. Then we can assign a

label to the non-terminals based on the yield they span (Figure 5.7c), and obtain a

grammar of records similar in spirit to GDP. The fundamental difference is that in this

case we do not respect sentence delimiters (i.e., the full-stop), since it is not modelled

explicitly as in the case of rule (2) in GDP
3. A better alternative would be to modify the

original model of CCM to explicitly take into account sentence punctuation; we leave

this approach to future work.

5.7 Summary

In this chapter we presented an extension to the model of Chapter 4 which integrates

document planning. We presented an alternative to the original grammar GGEN which

identifies sentences in a document and represents the relationships between records

within as well as among, sentences. We provided a simple mechanism to extract gram-

mar rules directly from training data, and a modified scheme to train our generator. Fi-

nally, we evaluated our system on two multi-sentence datasets, namely WEATHERGOV

and WINHELP, obtaining state-of-the-art performance compared to the system of An-

geli et al. (2010). Error analysis of the document plans created during decoding re-

vealed interesting learnt domain-specific patterns at the record level, which were out

of scope of the simpler document planning capabilities of the original model presented

in Chapter 4.

3Including the sentence delimiter in the input string, is likely to lead the model to overfitting. This has
been also noted by the authors of CCM who remove punctuation from their training corpus (sentences
with 10 words or less from the WSJ corpus).
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D

[SENT(skyCover, temp)-SENT(windDir, windSpeed)-SENT(precipPotential)]

[SENT(windDir, windSpeed)-SENT(precipPotential)]

SENT(precipPotential)

R(precipPotential1)

SENT(windDir, windSpeed)

R(windSpeed1)R(windDir1)

SENT(skyCover, temp)

R(temp1)R(skyCover1)

SENT(rainChance)

R(rainChance1)

(a) Example document plan derivation tree on the WEATHERGOV domain.

D

〈D. . .SENT(nav-desk, nav-desk-t)〉

〈D. . .SENT(nav-win, nav-win-t)〉

SENT(exit-cMenu)

R(exit-cMenu1)

SENT(action-cMenu)

R(action-cMenu1)

SENT(nav-win, nav-win-t)

R(nav-win-t1)R(nav-win1)

SENT(nav-desk, nav-desk-t)

R(nav-desk-t1)R(nav-desk1)

D

〈D. . .SENT(nav-start, nav-start-t)〉

. . .SENT(nav-cMenu, nav-cMenu, nav-cMenu-t)

〈SENT(nav-cMenu, nav-cMenu, nav-cMenu-t). . .nav-cMenu〉

R(nav-cMenu-t1)R(nav-cMenu1)

R(nav-cMenu1)

SENT(nav-start, nav-start-t)

R(nav-start-t1)R(nav-start1)

(b) Example document plan derivation trees for the WINHELP domain. We abbreviated record type

names for the sake of clarity.

Figure 5.6: Example derivation trees that correspond to the document planning rules of

GDP captured during the Viterbi search of the examples shown in Figure 5.4 and 5.5,

for the DP-UNSUP system. Interesting learned patterns are highlighted in bold.
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rainChance1 thunderChance1

Showers and thunderstorms .

temperature1

High near 70 .

skyCover1

Cloudy ,

windDir1 windSpeed1

with a south wind around 20mph ,

gust1

with gusts as high as 40mph .

precipPotential1

Chance of precipitations is 100% .

[
rainChance thunderChance temperature skyCover windDir windSpeed gust precipPotential

]
(a) Record token alignments and input string to CCM without sentence delimiters.

(CAT

(CAT

(CAT (PRE rainChance) (PRE skyCover))

(PRE temperature))

(CAT (PRE windDir) (PRE windSpeed)))

D

CAT

PRE

windSpeed

PRE

windDir

CAT

PRE

temperature

CAT

PRE

skyCover

PRE

rainChance

(b) Induced unlabelled tree structure.

D

(windDir-windSpeed)

windSpeedwindDir

(rainChance-skyCover-temperature)

temperature(rainChance-skyCover)

skyCoverrainChance

(c) Automatically labelled tree structure.

Figure 5.7: Grammar extraction example from the WINHELP domain using CCM: (a)

We first take the alignments of records on words, map them to their corresponding types

and ignore the sentence segmentation; this is the input string used for training. (b) Then

CCM generates a bracketing of the input string, which represents an unlabelled tree.

(c) We label non-terminals using the surface level yield of their span.





Chapter 6

An Exploration in Discriminative

Reranking

In the previous chapter we extended the original grammar presented in Chapter 4 by

introducing rules that perform document planning. In this chapter we will go back to

the original model, and will focus on a different learning scheme, i.e., reranking the

hypergraph implementation discriminatively. Since we encode a k-best list of deriva-

tions at each hypernode, it is quite appealing to try and re-order them using evidence

from the input database and text in the form of features. Given the extra flexibility

of introducing arbitrary features to the model, we will look into an area which could

not be explored with either of the previous two models presented, namely perform-

ing content selection on the field level. We used the structured perceptron (Collins,

2002) for learning, and experimented on the ATIS dataset. Since the perceptron is a

discriminative training algorithm, experiments on larger datasets (in terms of output

text length) would require major modifications (i.e., introduce parallelisation) to the

original algorithm and we thus leave this to future work1.

6.1 Motivation

Following the generative approach presented in Chapter 4, we first have to learn the

weights of the PCFG by maximising the joint likelihood of the model and then per-

form generation by finding the best derivation tree in the hypergraph. If we regard

this model as a baseline system instead, we could potentially further improve it using
1We refrained from experimenting on ROBOCUP, because content selection is fixed on the baseline

models we compare against as we saw in Section 4.4.4. As a result, there would be no gain from the
exploration on the additional field-level features.

113
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discriminative reranking (Collins, 2000). Typically, this method first creates a list of

n-best candidates from a generative model, and then reranks them with arbitrary fea-

tures (both local and global) that are either not computable or intractable to compute

within the baseline system.

An appealing alternative is to rerank the hypergraph directly (Huang, 2008). As

it compactly encodes exponentially many derivations, we can explore a much larger

hypothesis space than would have been possible with an n-best list. Importantly, in this

framework non-local features are computed at all internal hypergraph nodes, allowing

the decoder to take advantage of them continuously at all stages of the generation

process. We incorporate features that are local with respect to a span of a sub-derivation

in the packed forest; we also (approximately) include features that arbitrarily exceed

span boundaries, thus capturing more global knowledge.

Discriminative reranking has been employed in many NLP tasks such as syntactic

parsing (Charniak and Johnson, 2005; Huang, 2008), machine translation (Shen et al.,

2004; Li and Khudanpur, 2009) and semantic parsing (Ge and Mooney, 2006). The

presented approach is closest to Huang (2008) who also performs forest reranking on a

hypergraph, using both local and non-local features, whose weights are tuned with the

averaged perceptron algorithm (Collins, 2002). We adapt forest reranking to generation

and introduce several task-specific features that boost performance. Compared to the

discriminative model of Angeli et al. (2010), our model is fundamentally different in

the learning aspect. We have a single reranking component that applies throughout,

whereas they train different discriminative models for each local decision.

We will experiment on the ATIS domain only as a proof of concept, since it is much

smaller in terms of output text length compared to WEATHERGOV and WINHELP.

Parallelising the perceptron algorithm in order to scale to larger text outputs requires

major engineering and tuning, and we leave it to future work. However, ATIS poses

the greatest challenges compared to the rest in terms of content selection at the field

level; many of its record types have a large number of fields (e.g., record type Flight
has 13 fields, whereas the maximum number of fields in WEATHERGOV’s record types

is 4). Therefore we expect that this domain will benefit a lot more than the others from

features at the field level. In addition all the field types in ATIS are categorical, i.e.,

we keep a separate multinomial distribution for each value in order to lexicalise them

(see the rule weight of rule (9) in grammar GGEN in Table 4.1). Again ATIS has fields

with a much larger number of values (e.g., field from of the record type Flight has 61

values, whereas the field mode of the record type Wind Direction with most values
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in WEATHERGOV has merely 17 values). Given that most of these values are rarely

seen we believe that training the corresponding features discriminatively, will result in

a greater boost in performance than in the other datasets.

6.2 Hypergraph Reranking

Recall that for our generation task, we are given a set of database records d, and our

goal is to find the best corresponding text g. For this study, we will use the grammar

GGEN in Table 4.12, which we represent using the hypergraph framework described in

Section 4.3.3. The fundamental difference with the previous models is that the weights

on the hyperarcs are defined by a variety of feature functions, which we learn via

a discriminative online update algorithm. During decoding we find the best scoring

derivation (ĝ, ĥ) by maximizing over configurations of h:

(ĝ, ĥ) = argmax
g,h

α ·Φ(d,g,h) (6.1)

We define the score of (g,h) as the dot product between a high dimensional feature

representation Φ = (Φ1, . . . ,Φm) and a weight vector α.

We estimate the weights α using the averaged structured perceptron algorithm

(Collins, 2002), which is well known for its good performance in similar large-parameter

NLP tasks (Liang et al., 2006; Huang, 2008). As shown in Algorithm 6.1, the percep-

tron makes several passes over the training scenarios, and in each iteration it computes

the best scoring (ĝ, ĥ) among the candidate derivations, given the current weights α.

In line 7, the algorithm updates α with the difference (if any) between the feature rep-

resentations of the best scoring derivation (ĝ, ĥ) and the the oracle derivation (w,h+).

Recall that, ĝ is the estimated text and w the gold-standard text. We also define ĥ as the

estimated latent configuration of the model and h+ as the oracle latent configuration.

The final weight vector α is the average of weight vectors over T iterations and N sce-

narios. This averaging procedure avoids overfitting and produces more stable results

(Collins, 2002).

In the following, we first explain how we decode in this framework, i.e., find the

best scoring derivation (Section 6.2.1) and then discuss our definition for the oracle

derivation (w,h+) (Section 6.2.2). Our features are described in Section 6.2.3.

2Since we experiment only on a single-sentence output text, we do not need a document plan, hence
we will not make use of the sophisticated grammar GGEN++ in Table 5.1
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1: function PERCEPTRON(Training scenarios: (di,w,h+i )
N
i=1)

2: α← 0

3: for t← 1 . . .T do
4: for i← 1 . . .N do
5: (ĝ, ĥ) = argmaxg,h α ·Φ(di,gi,hi)

6: if (wi,h+i ) 6= (ĝi, ĥi) then
7: α← α+Φ(di,wi,h+i )−Φ(di, ĝi, ĥi)

8: end if
9: end for

10: end for
11: return 1

T ∑
T
t=1

1
N ∑

N
i=1 αi

t

12: end function

Figure 6.1: The average structured perceptron algorithm (Collins, 2002).

6.2.1 Hypergraph Decoding

Following Huang (2008), we also distinguish features into local, i.e., those that can be

computed within the confines of a single hyperedge, and non-local, i.e., those that re-

quire the prior visit of nodes other than their antecedents. For example, the Alignment

feature in Figure 6.2(a) is local, and thus can be computed a priori, but the Word Tri-

grams is not; in Figure 6.2(b) words in parentheses are sub-generations created so far

at each word node; their combination gives rise to the trigrams serving as input to the

feature. However, this combination may not take place at their immediate ancestors,

since these may not be adjacent nodes in the hypergraph. According to the grammar

in Table 4.1, there is no direct hyperedge between nodes representing words (W) and

nodes representing the set of fields these correspond to (FS); rather, W and FS are con-

nected implicitly via individual fields (F). Note that, in order to estimate the trigram

feature at the FS node, we need to carry word information in the derivations of its

antecedents, as we go bottom-up.3

Given these two types of features, we can then adapt Huang’s 2008 approximate

decoding algorithm to find (ĝ, ĥ). Note that this algorithm is similar in spirit to the

implementation of the cube pruning algorithm on hypergraphs presented in detail in

Section 4.15; the only essential difference is the incorporation of feature vectors. Es-

sentially, we perform bottom-up Viterbi search, visiting the nodes in reverse topolog-

3We also store field information to compute content selection features, described in Section 6.2.3.
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ical order, and keeping the k-best derivations for each. The score of each derivation

is a linear combination of local and non-local feature weights. In machine translation,

a decoder that implements forest rescoring (Huang and Chiang, 2007) uses the lan-

guage model as an external criterion of the goodness of sub-translations on account

of their grammaticality. Analogously here, non-local features influence the selection

of the best combinations, by introducing knowledge that exceeds the confines of the

node under consideration and thus depend on the sub-derivations generated so far.

(e.g., word trigrams spanning a field node rely on evidence from antecedent nodes that

may be arbitrarily deeper than the field’s immediate children).

6.2.2 Oracle Derivation

So far we have remained agnostic with respect to the oracle derivation (w,h+). In

other NLP tasks such as syntactic parsing, there is a gold-standard parse, that can be

used as the oracle. In our generation setting, such information is not available. We do

not have the gold-standard alignment between the database records and the text that

verbalizes them. Instead, we approximate it using the existing decoder to find the best

latent configuration h+ given the observed words in the training text w.4 This is similar

in spirit to the alignment task presented in Section 3.3.1.

6.2.3 Features

Broadly speaking, we defined two types of features, namely lexical and content selec-

tion ones. In addition, we used a generatively trained PCFG as a baseline feature and

an alignment feature based on the co-occurrence of records (or fields) with words.

Baseline Feature This is the log score of k-BEST-LM trained on grammar GGEN

of Table 4.1 as described in Chapter 4. Intuitively, the feature refers to the overall

goodness of a specific derivation, applied locally in every hyperedge.

Alignment Features Instances of this feature family refer to the count of each PCFG

rule from Table 4.1. For example, how many times we are going to include in a deriva-

tion rule R(search1.t)→ FS( f light1,start) R( f light1.t) (see Figure 6.2(a)).

4In machine translation, Huang (2008) provides a soft algorithm that finds the forest oracle, i.e., the
parse among the reranked candidates with the highest Parseval F-score. However, it still relies on the
gold-standard reference translation.
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R(search1.t)

FS(flight1.t,start) R(flight1.t)

FS0,3(search1.t,start)

w0(search1.t,type) · · · w1,2(search1.t,what)
show

me

what

· · ·




me the

me f lights

the f lights

· · ·



FS2,6(flight1.t,start)

F2,4(flight1.t,from) FS4,6(flight1.t,from)

F4,6(flight1.t,to)
ε

| 2 words |

(b)Word Trigrams (non-local)

<show me the>, <show me flights>, etc.

(a)Alignment Features (local)

<R(srch1.t)→ FS(fl1.t,st) R(fl1.t)>

(c)Field Bigrams (non-local)

<from to> | flight

(d)Number of Words per Field (local)

<2 | from>

Figure 6.2: Simplified hypergraph examples with corresponding local and non-local

features.
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Lexical Features These features encourage grammatical coherence and inform lex-

ical selection over and above the limited horizon of the language model captured by

Rules (6)–(10). They also tackle anomalies in the generated output, due to the chaining

of the CFG rules at the record and field level.

Word Bigrams/Trigrams: this is a group of non-local feature functions that count

word n-grams at every level in the hypergraph (see Figure 6.2(b)). The integration of

words in the sub-derivations is adapted from Chiang (2007).

Number of Words per Field: this feature function counts the number of words for

every field, aiming to capture compound proper nouns and multi-word expressions,

e.g., fields from and to frequently correspond to two or three words such as ‘new york’

and ‘salt lake city’ (see Figure 6.2(d)).

Consecutive Word/Bigram/Trigram: this feature family targets adjacent repetitions

of the same word, bigram or trigram, e.g., ‘show me the show me the flights’.

Content Selection Features at Field Level Features in this category target primarily

content selection and influence appropriate choice at the field level.

Field bigrams/trigrams: analogously to the lexical features mentioned above, we

introduce a series of non-local features that capture field n-grams, given a specific

record. For example the record flight in the air travel domain typically has the field

names <from to> (see Figure 6.2(c)). The integration of fields in sub-derivations is

implemented in a fashion similar to the integration of words.

Number of Fields per Record: this feature family is a coarser version of the Field

bigrams/trigrams feature, which is deemed to be sparse for rarely-seen records.

Field with No Value: although records in the ATIS database schema have many

fields, only a few are assigned a value in any given scenario. For example, the flight
record has 13 fields, of which only 1.7 (on average) have a value. Practically, in a

generative model this kind of sparsity would result in very low field recall. We thus

include an identity feature function that explicitly counts whether a particular field has

a value.

6.3 Experiments

In this exploratory study, our aim was to assess the merits of discriminative reranking

as a framework for concept-to-text generation. In addition we wanted to experiment

with content selection features at the field level. As we discussed Section 6.1, we
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believe that some database record types with a rich set of fields and many different cat-

egorical values in each field as is the case in ATIS, can benefit a lot by explicit feature

engineering specifically at the field level. In the experiments we describe below we re-

strict our models in two ways: firstly, we include only shallow surface lexical features

rather than syntactic dependencies; in this way the model can be loosely compared to

k-BEST-LM. This is because we wanted to exclude any longer range influences that

stem from syntax which might interfere with content selection at the field level. Sec-

ondly, as mentioned earlier, we evaluate our model only on ATIS. This was mandated

by the discriminative nature of the learning algorithm we used, namely the structured

perceptron. Recall that each update of the feature weights Φ require two Viterbi up-

dates, i.e., one for the computation of the non-local features (local features can be

pre-computed and cached), and another for the oracle derivation. Given that this up-

date takes place upon observing each training scenario, it cannot be implemented in

a parallel architecture5, and therefore does not scale for domains with longer output

texts, such as WEATHERGOV and WINHELP. We did not experiment on ROBOCUP

as content selection is fixed on the baseline models we compare to (see Section 4.4.4),

therefore there would be no actual gain from field-level features.

6.3.1 System Comparison

We evaluated three configurations of our model: A system that only uses the top scor-

ing derivation in each sub-generation and incorporates only the baseline and alignment

features (1-BEST+BASE+ALIGN). Our second system considers the k-best derivations

and additionally includes lexical features (k-BEST+BASE+ALIGN+LEX). The number

of k-best derivations was set to 40 and estimated experimentally on held-out data. And

finally, our third system includes the full feature set (k-BEST+BASE+ALIGN+LEX+FIELD).

Note that the second and third system incorporate non-local features, hence the use of

k-best derivation lists.6 We compared our model to Angeli et al. (2010) whose ap-

proach is closest to ours.

We evaluated system output automatically, using the BLEU-4 and the METEOR

5McDonald et al. (2010) present an implementation of the perceptron algorithm that runs in parallel
or rather batch-processing environments, by splitting the training scenarios in shards and processing
each in isolation. They show that combining and averaging the resulting weights from each shard does
not compromise the accuracy of the algorithm. We leave the implementation of this framework to future
work.

6Since the addition of these features essentially entails reranking, it follows that the systems would
exhibit the exact same performance as the baseline system with 1-best lists.
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score. In addition, we evaluated the generated text by eliciting human judgements. We

randomly selected 12 documents from the test set and generated output with two of our

models (1-BEST+BASE+ALIGN and k-BEST+BASE+ALIGN+LEX+FIELD) and Angeli

et al.’s (2010) model. We also included the original text HUMAN as gold standard.

6.4 Results

System BLEU METEOR

1-BEST+BASE+ALIGN 21.93◦†� 34.01◦†�

k-BEST+BASE+ALIGN+LEX 28.66∗◦� 45.18∗◦�

k-BEST+BASE+ALIGN+LEX+FIELD 30.62∗◦† 46.07∗◦†

ANGELI 26.77∗†� 42.41∗†�

Table 6.1: BLEU-4 and METEOR results on ATIS. (∗: significantly differ-

ent from 1-BEST+BASE+ALIGN; ◦: significantly different from ANGELI; †: signif-

icantly different from k-BEST+BASE+ALIGN+LEX; �: significantly different from k-

BEST+BASE+ALIGN+LEX+FIELD).

System F SC

1-BEST+BASE+ALIGN 2.70�†◦ 3.05�†

k-BEST+BASE+ALIGN+LEX+FIELD 4.02∗◦ 4.04∗◦

ANGELI 3.74∗�† 3.17�†

HUMAN 4.18∗◦ 4.02∗◦

Table 6.2: Mean ratings for fluency (F) and semantic correctness (SC)

on system output elicited by humans on ATIS.(∗: significantly different from

1-BEST+BASE+ALIGN; ◦: significantly different from ANGELI; �: significantly different

from k-BEST+BASE+ALIGN+LEX+FIELD; †: significantly different from HUMAN).

Table 6.1 summarizes our results. As can be seen, inclusion of lexical features

gives our decoder an absolute increase of 6.73% in BLEU over the 1-BEST system. It

is interesting to note though that this baseline is much stronger than the baseline of the

original generative model presented in Chapter 4 (BLEU-4 21.93 versus 11.85). This

is expected given that the new model benefits more from the discriminative training
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even though it uses the same amount of data. Our model also significantly outperforms

ANGELI. Our lexical features seem more robust compared to their templates. This

is especially the case with infrequent records, where their system struggles to learn

any meaningful information. Addition of the content selection features further boosts

performance. Our model increases by 8.69% over the 1-BEST system and 3.85% over

ANGELI in terms of BLEU (all differences are statistically significant). We observe a

similar trend when evaluating system output with METEOR. Differences in magnitude

are larger with the latter metric.

The results of our human evaluation study are shown in Table 6.2. We carried out

an Analysis of Variance (ANOVA) to examine the effect of system type (1-BEST, k-

BEST, ANGELI, and HUMAN) on the fluency and semantic correctness ratings. Mean

differences were compared using a post-hoc Tukey test. The k-BEST system is signifi-

cantly better than the 1-BEST and ANGELI (a < 0.01) both in terms of fluency and se-

mantic correctness. ANGELI is significantly better than 1-BEST with regard to fluency

(a < 0.05) but not semantic correctness. There is no statistically significant difference

between the k-BEST output and the original sentences (HUMAN). Examples of system

output are shown in Figure 6.3. They broadly convey similar meaning with the gold-

standard; ANGELI in Figure 6.3a exhibits some long-range repetition, probably due

to re-iteration of the same record patterns. We tackle this issue with the inclusion of

non-local content selection features, justifying the validity of our claim that features at

the field level can contribute to better decisions, and thus produce more fluent output.

Other than that, the 1-BEST system has some grammaticality issues, which we avoid

by defining features over lexical n-grams and repeated words. It is worth noting that

both our system and ANGELI produce output that is semantically compatible with but

lexically different from the gold standard (compare please list the flights and show me

the flights against give me the flights in Figure 6.3a); this is of course expected given

the size of the vocabulary (927 words). Finally, notice how the multi-word destination

name, Salt Lake City, in Figure 6.3b is captured only in part in ANGELI and 1-BEST.

This is probably due to insufficient training data instances for the particular field value.

K-BEST tackles this with the aid of lexical features.

6.5 Summary

In this chapter we presented an alternative learning approach by employing discrimi-

native reranking of the hypergraph implementation of the generator presented in Chap-
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ter 4. The key idea was to re-order the k-best derivations encoded in each hyperarc,

based on knowledge obtained from the input database and the text. We achieved that by

defining local and global features that capture content selection and surface realisation,

as well as features that specifically perform content selection on the field level. We em-

ployed the structured perceptron algorithm (Collins, 2002) for learning and evaluated

our generator on the ATIS dataset. Our system outperformed a strong baseline using

alignment features and the score of the model presented in Chapter 4, as well as the

discriminative model of Angeli et al. (2010). Error analysis on system output indicated

that the incorporation of non-local features at the field level contributed to resolving

long-range issues, such as avoiding n-gram repetitions and correctly realising multi-

word field values.
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Input:

Flight

from to

Phoenix Milwaukee

Time

when dep/ar

evening departure

Day

day dep/ar/ret

Wednesday departure

Search

type what

query flight

1-BEST: On Wednesday evening from from Phoenix to Milwaukee on

Wednesday evening

k-BEST: Please list the flights from Phoenix to Milwaukee on Wednesday

evening

ANGELI: Show me the flights from Phoenix to Milwaukee on Wednesday

evening flights from Phoenix to Milwaukee

HUMAN: Give me the flights from Phoenix to Milwaukee on Wednesday evening

(a)

Input:

Flight

from to

Oakland Salt Lake City

Day

day dep/ar/ret

Wednesday departure

Search

type what of

argmax flight departure time

1-BEST: From Oakland to Salt on Wednesday from from Oakland to Salt

k-BEST: Latest the last flight from Oakland to Salt Lake City on Wednesday

ANGELI: Show me the latest flight available flights from Oakland California to

Salt on Wednesday

HUMAN: Get last flight from Oakland to Salt Lake City on Wednesday

(b)

Figure 6.3: Examples of scenario input and system output on ATIS.
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Conclusions

In this thesis, we focused on the task of concept-to-text generation, namely the pro-

cess of automatically producing textual output from structured non-linguistic input.

Traditionally, this task has been addressed in a modular pipeline approach, with each

module tackling different aspects of the generation process (i.e., ‘what to say’ and ‘how

to say’), independently or with limited interaction. Most successful systems adhere to

rule-based methods and rely partially or entirely on manually annotated data. We pre-

sented an end-to-end modelling approach that treats various generation components in

a joint fashion, does not rely on annotation, and extracts the structural and linguistic

knowledge necessary for the generation of the final output, from training data.

The key idea of our model is to recast generation as a probabilistic parsing problem.

To achieve this, we developed a syntactic probabilistic context-free grammar (Chap-

ter 4) that decomposes the structure of the database input as a sequence of records,

fields and values and observes words of the collocated text as terminal symbols. The

weights on the grammar rules are acquired in an unsupervised manner using EM and

the inside-outside algorithm. We presented several parsing algorithms based on the

popular CYK parser (Kasami, 1965; Younger, 1967), that take as input a database of

records and a trained in-domain grammar and produce text. In order to guarantee the

fluency and grammaticality of the output, we intersected our PCFG with an ensem-

ble of external linguistically motivated models, namely an n-gram language model

and the dependency model with valence of Klein and Manning (2004). We imple-

mented our decoding algorithms using the hypergraph framework. We empirically

evaluated our models both automatically and via eliciting human judgements across

four domains, namely ROBOCUP, WEATHERGOV, ATIS and WINHELP. Our mod-

els performed comparably or achieved state-of-the-art performance compared to the

125
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discriminative model of Angeli et al. (2010). However, they do not perform as well

compared to the system of Kim and Mooney (2010) on ROBOCUP, possibly due to the

later being trained with more supervision and relying on an additional re-ordering step

before emitting the output text.

In Chapter 5 we extended our PCFG with two syntactic rules that aim to capture

patterns at the document level. The original model selected and ordered records from

the database input in order to be mentioned in the text, on a local Markovian basis. In

this incarnation of the model we defined a document plan as a sequence of sentences,

where each sentence contains a sequence of records. Since the extra rules increased the

search space for our decoder prohibitively, we directly extracted domain-specific rules

from the training data as a pre-processing step and included this subset with the rest of

the grammar for decoding the database input. We evaluated the new model automati-

cally and via user studies on two multi-sentence domains, namely WEATHERGOV and

WINHELP. We noticed a considerable increase in performance compared to the orig-

inal models and the competitive baseline system of Angeli et al. (2010), and observed

promising learned document plan trees based on a post-hoc error analysis.

Finally, Chapter 6 explores how to enhance the original model presented in Chap-

ter 4 with more expressivity by using a discriminative reranking approach. We achieve

this by training the original PCFG discriminatively, by directly reranking the hyper-

graph representation. We defined a set of lexical and content selection feature vectors

on the arcs of the hypergraph, and learned their weights using the averaged structured

perceptron algorithm (Collins, 2002). Experiments on the ATIS domain revealed a

significant increase in terms of automatic scores and according to a human evaluation

study, when compared to the original model presented in Chapter 4 and the discrimi-

native baseline of Angeli et al. (2010).

Overall, the work presented in this thesis makes a strong case for data-driven

concept-to-text generation. To the best of our knowledge this is the first systematic

study of modelling jointly content planning, sentence planning and surface realisation

in one unified framework. Addressing text generation in an end-to-end fashion as a

common parsing problem, guided by a syntactic grammar trained on in-domain data,

allows for compact and highly portable systems, benefiting from limited or no supervi-

sion. The viability and versatility of our models is supported by a rigorous evaluation

methodology across four real-world domains. Outwith generation, we hope that some

of the work described here might be of relevance to other applications such as sum-

marisation or machine translation.
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To conclude, the experimental results obtained in this thesis provide evidence that a

purely data-driven probabilistic joint model for concept-to-text generation can generate

fluent and understandable text with minimal manual intervention. It is only a matter

of time and concentrated effort before we go from the prototypes presented here to

commercially deployed systems.

7.1 Future Work

Future extensions are many and varied. An obvious extension concerns porting the

framework to more challenging domains with richer vocabulary and longer texts. More

specifically, an interesting line of research would be to focus on readily available user-

generated input data such as Freebase (www.freebase.com) and Wikipedia articles

(www.wikipedia.com), and generate text on domains such as biographies, music-

related facts, movies or in general media descriptions. The benefits as well as chal-

lenges are wide-ranging: The size of input data is orders of magnitude larger, which

calls for more elaborate content selection on an early stage, to avoid a blowup in search

space. Hixon and Passonneau (2013) adopt a PageRank-style schema summarisation

technique which allows them to traverse the whole input database and select tables

that are close to each other based on an input query. This has the benefit of relying on

the input data only, thus avoiding the cost of jointly optimising the database records,

fields and values with the resulting text. A similar idea could be employed to filter

out excess information before fitting it to our PCFG. Factual text such as biographies

or descriptions of music albums, contain lots of references to entities, e.g., the par-

ents of an author, his/her birthplace and so on. Generating fluent text requires some

notion of more sophisticated sentence planning in the form of referring expressions

generation, such as coreference. This way we will be able to avoid unnecessary rep-

etitions of source identifiers, for example using the same proper name all the time. A

straightforward extension to the existing model would be to directly identify entities

as part of the grammar, similarly to how we tackle fields and values. This way we can

employ an external coreference resolution model to constraint the search, similarly to

how we used an n-gram language model and a dependency model to rescore k-best

derivations during decoding. In general, moving to an open-ended input database def-

initely raises questions as to the ability of the existing decoders to scale satisfactorily,

and will probably require better engineering of the existing framework.

On another issue, although we have adopted throughout this thesis the hypergraph
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framework as a means of representing our PCFG, it is not the only implementation we

could employ. It would be interesting to apply different formalisms such as finite state

transducers (de Gispert et al., 2010), or push-down automata (Iglesias et al., 2011) and

measure the tradeoffs between speed and performance. The former implementation

could probably be an attractive solution for the scaling concerns raised above in the

case of larger domains. Finally, in terms of document planning it would be worthwile

to experiment with more sophisticated planners either via better grammar refinement

or more expressive grammar formalisms (Cohn et al., 2010).



Appendix A

Example Scenarios

In the following sections we include example scenarios for each dataset we used. Each

scenario consists of the database records in a tab-separated, attribute-value pair format

(following Liang et al. (2009)). Each row corresponds to a uniquely identifiably record

(see the first attribute .id), followed by the record type (e.g. .type:windDir), and a

set of attribute-value pairs separated with tabs that correspond to the type of the field

(#, @, $, denote integer, categorical, and string types, respectively), the field name,

and its value. For example the pair @mode:S, stands for the categorical field mode with

value S.

Below the records follows the corresponding text, split in lines. ROBOCUP and

ATIS have only single sentence texts, whereas WEATHERGOV and WINHELP have

multi-sentence texts. In WEATHERGOV, lines correspond to phrases split at punctua-

tion, while in WINHELP, lines correspond to sentences split at the full-stop. Finally,

record alignments are appended at the end of each line of text. Recall that record

alignments are obtained either manually or automatically based on domain-specific,

human-created heuristics. Each row indicates a set of alignments per line of text, and

is represented by a sequence of numbers, corresponding to record identifiers. For ex-

ample:

South southwest wind around 10 mph. 3 2

means that this line of text is aligned to records with id 3 and 2, respectively.
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A.1 ROBOCUP Examples

[Example 1]
.id:0 .type:pass @arg1:purple9 @arg2:purple2
.id:1 .type:kick @arg1:purple2
.id:2 .type:badPass @arg1:purple2 @arg2:pink8
.id:3 .type:turnover @arg1:purple2 @arg2:pink8

Purple9 passes out to Purple2 0

[Example 2]
.id:0 .type:pass @arg1:purple10 @arg2:purple8
.id:1 .type:kick @arg1:purple8
.id:2 .type:pass @arg1:purple8 @arg2:purple10

Purple8 immediately returns the ball to Purple10 2

[Example 3]
.id:0 .type:pass @arg1:pink11 @arg2:pink9
.id:1 .type:kick @arg1:pink9
.id:2 .type:pass @arg1:pink9 @arg2:pink7

Purple8 passes to Purple10 who was well defended by Pink3 0

[Example 4]
.id:0 .type:pass @arg1:purple3 @arg2:purple1
.id:1 .type:playmode @arg1:free kick l
.id:2 .type:ballstopped

free kick from the purple team 1
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A.2 WEATHERGOV Examples

[Example 1]
.id:0 .type:temperature @time:17-30 #min:57 #mean:62

#max:71
.id:1 .type:windChill @time:17-30 #min:0 #mean:0

#max:0
.id:2 .type:windSpeed @time:17-30 #min:7 #mean:8

#max:10 @bucket:0-10
.id:3 .type:windDir @time:17-30 @mode:S
.id:4 .type:gust @time:17-30 #min:0 #mean:0

#max:0
.id:5 .type:skyCover @time:17-30 @bucket:25-50
.id:6 .type:skyCover @time:17-21 @bucket:25-50
.id:7 .type:skyCover @time:17-26 @bucket:25-50
.id:8 .type:skyCover @time:21-30 @bucket:25-50
.id:9 .type:skyCover @time:26-30 @bucket:25-50
.id:10 .type:precipPotential @time:17-30 #min:0 #mean:3

#max:10
.id:11 .type:thunderChc @time:17-30 @mode:--
.id:12 .type:thunderChc @time:17-21 @mode:--
.id:13 .type:thunderChc @time:17-26 @mode:--
.id:14 .type:thunderChc @time:21-30 @mode:--
.id:15 .type:thunderChc @time:26-30 @mode:--
.id:16 .type:rainChc @time:17-30 @mode:--
.id:17 .type:rainChc @time:17-21 @mode:--
.id:18 .type:rainChc @time:17-26 @mode:--
.id:19 .type:rainChc @time:21-30 @mode:--
.id:20 .type:rainChc @time:26-30 @mode:--
.id:21 .type:snowChc @time:17-30 @mode:--
.id:22 .type:snowChc @time:17-21 @mode:--
.id:23 .type:snowChc @time:17-26 @mode:--
.id:24 .type:snowChc @time:21-30 @mode:--
.id:25 .type:snowChc @time:26-30 @mode:--
.id:26 .type:freezeRainChc @time:17-30 @mode:--
.id:27 .type:freezeRainChc @time:17-21 @mode:--
.id:28 .type:freezeRainChc @time:17-26 @mode:--
.id:29 .type:freezeRainChc @time:21-30 @mode:--
.id:30 .type:freezeRainChc @time:26-30 @mode:--
.id:31 .type:sleetChc @time:17-30 @mode:--
.id:32 .type:sleetChc @time:17-21 @mode:--
.id:33 .type:sleetChc @time:17-26 @mode:--
.id:34 .type:sleetChc @time:21-30 @mode:--
.id:35 .type:sleetChc @time:26-30 @mode:--

Partly cloudy , 5
with a low around 56 . 0
South southwest wind around 10 mph . 3 2



132 Appendix A. Example Scenarios

[Example 2]
.id:0 .type:temperature @time:6-21 #min:58 #mean:63

#max:67
.id:1 .type:windChill @time:6-21 #min:0 #mean:0

#max:0
.id:2 .type:windSpeed @time:6-21 #min:10 #mean:19

#max:23 @bucket:10-20
.id:3 .type:windDir @time:6-21 @mode:S
.id:4 .type:gust @time:6-21 #min:0 #mean:24

#max:31
.id:5 .type:skyCover @time:6-21 @bucket:50-75
.id:6 .type:skyCover @time:6-9 @bucket:25-50
.id:7 .type:skyCover @time:6-13 @bucket:25-50
.id:8 .type:skyCover @time:6-13 @bucket:50-75
.id:9 .type:skyCover @time:13-21 @bucket:50-75
.id:10 .type:precipPotential @time:6-21 #min:10 #mean:24

#max:36
.id:11 .type:thunderChc @time:6-21 @mode:Chc
.id:12 .type:thunderChc @time:6-9 @mode:--
.id:13 .type:thunderChc @time:6-13 @mode:--
.id:14 .type:thunderChc @time:6-13 @mode:Chc
.id:15 .type:thunderChc @time:13-21 @mode:Chc
.id:16 .type:rainChc @time:6-21 @mode:Chc
.id:17 .type:rainChc @time:6-9 @mode:--
.id:18 .type:rainChc @time:6-13 @mode:--
.id:19 .type:rainChc @time:6-13 @mode:Chc
.id:20 .type:rainChc @time:13-21 @mode:Chc
.id:21 .type:snowChc @time:6-21 @mode:--
.id:22 .type:snowChc @time:6-9 @mode:--
.id:23 .type:snowChc @time:6-13 @mode:--
.id:24 .type:snowChc @time:6-13 @mode:--
.id:25 .type:snowChc @time:13-21 @mode:--
.id:26 .type:freezeRainChc @time:6-21 @mode:--
.id:27 .type:freezeRainChc @time:6-9 @mode:--
.id:28 .type:freezeRainChc @time:6-13 @mode:--
.id:29 .type:freezeRainChc @time:6-13 @mode:--
.id:30 .type:freezeRainChc @time:13-21 @mode:--
.id:31 .type:sleetChc @time:6-21 @mode:--
.id:32 .type:sleetChc @time:6-9 @mode:--
.id:33 .type:sleetChc @time:6-13 @mode:--
.id:34 .type:sleetChc @time:6-13 @mode:--
.id:35 .type:sleetChc @time:13-21 @mode:--

A 30 percent chance of showers and thunderstorms after noon . 10 20 15
Mostly cloudy , 5
with a high near 69 . 0
South wind between 10 and 20 mph , 3 2
with gusts as high as 30 mph . 4
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[Example 3]
.id:0 .type:temperature @time:17-30 #min:53 #mean:61

#max:73
.id:1 .type:windChill @time:17-30 #min:0 #mean:0

#max:0
.id:2 .type:windSpeed @time:17-30 #min:23 #mean:24

#max:26 @bucket:10-20
.id:3 .type:windDir @time:17-30 @mode:WSW
.id:4 .type:gust @time:17-30 #min:31 #mean:33

#max:36
.id:5 .type:skyCover @time:17-30 @bucket:75-100
.id:6 .type:skyCover @time:17-21 @bucket:75-100
.id:7 .type:skyCover @time:17-26 @bucket:75-100
.id:8 .type:skyCover @time:21-30 @bucket:25-50
.id:9 .type:skyCover @time:26-30 @bucket:25-50
.id:10 .type:precipPotential @time:17-30 #min:1 #mean:42

#max:70
.id:11 .type:thunderChc @time:17-30 @mode:SChc
.id:12 .type:thunderChc @time:17-21 @mode:Lkly
.id:13 .type:thunderChc @time:17-26 @mode:Lkly
.id:14 .type:thunderChc @time:21-30 @mode:SChc
.id:15 .type:thunderChc @time:26-30 @mode:SChc
.id:16 .type:rainChc @time:17-30 @mode:SChc
.id:17 .type:rainChc @time:17-21 @mode:Lkly
.id:18 .type:rainChc @time:17-26 @mode:Lkly
.id:19 .type:rainChc @time:21-30 @mode:SChc
.id:20 .type:rainChc @time:26-30 @mode:SChc
.id:21 .type:snowChc @time:17-30 @mode:--
.id:22 .type:snowChc @time:17-21 @mode:--
.id:23 .type:snowChc @time:17-26 @mode:--
.id:24 .type:snowChc @time:21-30 @mode:--
.id:25 .type:snowChc @time:26-30 @mode:--
.id:26 .type:freezeRainChc @time:17-30 @mode:--
.id:27 .type:freezeRainChc @time:17-21 @mode:--
.id:28 .type:freezeRainChc @time:17-26 @mode:--
.id:29 .type:freezeRainChc @time:21-30 @mode:--
.id:30 .type:freezeRainChc @time:26-30 @mode:--
.id:31 .type:sleetChc @time:17-30 @mode:--
.id:32 .type:sleetChc @time:17-21 @mode:--
.id:33 .type:sleetChc @time:17-26 @mode:--
.id:34 .type:sleetChc @time:21-30 @mode:--
.id:35 .type:sleetChc @time:26-30 @mode:--
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Showers and thunderstorms likely , 18 13
mainly before midnight . 18 13
Some of the storms could be severe . –
Cloudy , 5
then gradually becoming partly cloudy , 5
with a low around 51 . 0
Windy , 2
with a southwest wind around 25 mph , 3 2
with gusts as high as 35 mph . 4
Chance of precipitation is 70 % . 10
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[Example 4]
.id:0 .type:temperature @time:6-21 #min:29 #mean:33

#max:38
.id:1 .type:windChill @time:6-21 #min:0 #mean:0

#max:0
.id:2 .type:windSpeed @time:6-21 #min:7 #mean:10

#max:15 @bucket:10-20
.id:3 .type:windDir @time:6-21 @mode:S
.id:4 .type:gust @time:6-21 #min:0 #mean:24

#max:31
.id:5 .type:skyCover @time:6-21 @bucket:75-100
.id:6 .type:skyCover @time:6-9 @bucket:75-100
.id:7 .type:skyCover @time:6-13 @bucket:75-100
.id:8 .type:skyCover @time:6-13 @bucket:75-100
.id:9 .type:skyCover @time:13-21 @bucket:75-100
.id:10 .type:precipPotential @time:6-21 #min:57 #mean:73

#max:91
.id:11 .type:thunderChc @time:6-21 @mode:--
.id:12 .type:thunderChc @time:6-9 @mode:--
.id:13 .type:thunderChc @time:6-13 @mode:--
.id:14 .type:thunderChc @time:6-13 @mode:--
.id:15 .type:thunderChc @time:13-21 @mode:--
.id:16 .type:rainChc @time:6-21 @mode:Lkly
.id:17 .type:rainChc @time:6-9 @mode:Lkly
.id:18 .type:rainChc @time:6-13 @mode:--
.id:19 .type:rainChc @time:6-13 @mode:--
.id:20 .type:rainChc @time:13-21 @mode:--
.id:21 .type:snowChc @time:6-21 @mode:Lkly
.id:22 .type:snowChc @time:6-9 @mode:Lkly
.id:23 .type:snowChc @time:6-13 @mode:Lkly
.id:24 .type:snowChc @time:6-13 @mode:Lkly
.id:25 .type:snowChc @time:13-21 @mode:Lkly
.id:26 .type:freezeRainChc @time:6-21 @mode:--
.id:27 .type:freezeRainChc @time:6-9 @mode:--
.id:28 .type:freezeRainChc @time:6-13 @mode:--
.id:29 .type:freezeRainChc @time:6-13 @mode:--
.id:30 .type:freezeRainChc @time:13-21 @mode:--
.id:31 .type:sleetChc @time:6-21 @mode:--
.id:32 .type:sleetChc @time:6-9 @mode:--
.id:33 .type:sleetChc @time:6-13 @mode:--
.id:34 .type:sleetChc @time:6-13 @mode:--
.id:35 .type:sleetChc @time:13-21 @mode:--

Rain and snow likely before 11am , 17 22
then snow . 21
High near 38 . 0
South wind between 8 and 15 mph . 3 2
Chance of precipitation is 90 % . 10
New snow accumulation of 1 to 3 inches possible . 21
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A.3 ATIS Examples

[Example 1]
.id:0 .type:city @from:any @location:-- @services:--

@stop:-- @to:--
.id:1 .type:flight @air code:-- @airline:-- @class type:--

@direction:-- @engine:-- @fare:--
@fl number:-- @from:any @manufacturer:--
@price:-- @stop:-- @to:mke

@year:--
.id:2 .type:search @of:-- @typed:lambda @what:flight

list all the flights that arrive at general mitchell international from
various cities

0 1 2

[Example 2]
.id:0 .type:flight @air code:-- @airline:-- @class type:--

@direction:-- @engine:-- @fare:--
@fl number:-- @from:pittsburgh @manufacturer:--
@price:-- @stop:-- @to:boston

@year:--
.id:1 .type:search @of:-- @typed:lambda @what:flight
.id:2 .type:day @day:saturday @dep ar ret:dep

pittsburgh to boston saturday 0 1 2

[Example 3]
.id:0 .type:flight @air code:-- @airline:ua @class type:--

@direction:-- @engine:-- @fare:--
@fl number:-- @from:pittsburgh @manufacturer:--
@price:-- @stop:denver @to:francisco

@year:--
.id:1 .type:search @of:-- @typed:lambda @what:flight
.id:2 .type:when @dep-ar:dep @when:morning
.id:3 .type:day number @day number:20 @dep ar ret:dep
.id:4 .type:month @dep ar ret:dep @month:september

what flights do you have in the morning of september twentieth
on united airlines from pittsburgh to san francisco and a stopover
in denver

0 1 2 3 4

[Example 4]
.id:0 .type:flight @air code:-- @airline:-- @class type:--

@direction:-- @engine:-- @fare:--
@fl number:-- @from:washington @manufacturer:--
@price:-- @stop:-- @to:boston

.id:1 .type:search @of:departure time @typed:argmax @what:flight

what is the last flight from washington to boston 0 1



A.4. WINHELP Examples 137

A.4 WINHELP Examples

[Example 1]
.id:0 .type:nav-desktop @envCmd:left click $objName:start

@objType:Button
.id:1 .type:nav-start @envCmd:left click $objName:settings

@objType:Button
.id:2 .type:nav-start-target @envCmd:left click $objName:control panel

@objType:Button
.id:3 .type:nav-contMenu @envCmd:left click $objName:view

@objType:Button
.id:4 .type:action-contMenu @envCmd:left click $objName:large icons

$typeInto:-- @objType:Menu
.id:5 .type:nav-contMenu @envCmd:left click $objName:view

@objType:Button
.id:6 .type:action-contMenu @envCmd:left click $objName:small icons

$typeInto:-- @objType:Menu

click start , point to settings , and then click control panel . 0 1 2
on the view menu , click large icons . 3 4
on the view menu , click small icons . 5 6

[Example 2]
.id:0 .type:nav-desk-target @envCmd:double click $objName:my computer

@objType:Item
.id:1 .type:nav-win @envCmd:left click $objName:tools

@objType:Button
.id:2 .type:nav-win-target @envCmd:left click $objName:folder

options
@objType:Menu

.id:3 .type:nav-contMenu @envCmd:left click $objName:file types
@objType:Tab

.id:4 .type:nav-location $name:registered
file types

@objType:Window

.id:5 .type:nav-contMenu @envCmd:left click @objType:Item
$objName:xls microsoft excel worksheet

.id:6 .type:nav-contMenu-
-target

@envCmd:left click $objName:advanced
@objType:Button

.id:7 .type:action-contMenu @envCmd:left click $typeInto:--
$objName:confirm open after download @objType:checkbox

.id:8 .type:exit-contMenu @envCmd:left click $objName:ok
@objType:Button
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double-click my computer . 0
on the tools menu , click folder options . 1 2
click the file types tab . 3
under registered file types , click to select xls microsoft excel
worksheet , and then click advanced .

4 5 6

click to clear the confirm open after download check box , and
then click ok .

7 8

[Example 3]
.id:0 .type:nav-desktop @envCmd:left click $objName:start

@objType:Button
.id:1 .type:nav-start @envCmd:left click $objName:programs

@objType:Button
.id:2 .type:nav-start @envCmd:left click $objName:accessories

@objType:Button
.id:3 .type:nav-start @envCmd:left click $objName:accessibility

@objType:Button
.id:4 .type:nav-start-target @envCmd:left click $objName:magnifier

@objType:Button
.id:5 .type:action-contMenu @envCmd:left click $typeInto:--

$objName:follow mouse cursor @objType:checkbox
.id:6 .type:exit-contMenu @envCmd:left click $objName:exit

@objType:Button

click start , point to programs , point to accessories , point to
accessibility , and then click magnifier .

0 1 2 3 4

click the follow mouse cursor check box to select it , and then
click exit .

5 6

[Example 4]
.id:0.type:nav-desk @envCmd:left click $objName:start

@objType:Button
.id:1.type:nav-start-target @envCmd:left click $objName:help

@objType:Button
.id:2.type:nav-contMenu @envCmd:left click $objName:search

@objType:Tab
.id:3.type:action-contMenu @envCmd:type into @objType:Edit

$objName:type in the keyword to find
$typeInto:internet connection sharing

.id:4.type:nav-contMenu @envCmd:left click $objName:list topics
@objType:Button

.id:5.type:nav-contMenu-tar @envCmd:double click @objType:Item
$objName:internet connection sharing

click start , and then click help . 0 1
on the search tab , type internet connection sharing in the type in
the keyword to find box , and then click list topics .

2 3 4

double-click internet connection sharing in the select topic box . 5 6
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Document Planning CFG Rules

In the following sections we give a list of document planning rules based on rule (1)

of grammar GGEN++ (Table 5.1) for WEATHERGOV and WINHELP. The rules were

extracted using both unsupervised (Section 5.4.1) and domain-based automatic align-

ments (Section 5.4.3) and were then binarized; in the case of WINHELP, the rules

were also horizontally markovised. We refer to each set of rules using the names of

the corresponding systems they were used on, namely DP-UNSUP and DP-AUTO. We

present the top-20 scoring rules for each domain rooted on the non-terminal D.
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B.1 WEATHERGOV Document Plan Rules

B.1.1 DP-UNSUP

D → SENT(skyCover, temperature) SENT(windDir, windSpeed)
D → SENT(rainChance) [SENT(skyCover, temperature)
SENT(windDir, windSpeed) SENT(precipPotential)]
D → SENT(skyCover, temperature) SENT(windDir, windSpeed, gust)
D → SENT(precipPotential, rainChance) [SENT(skyCover, temperature)
SENT(windDir, windSpeed)]
D → SENT(rainChance) [SENT(skyCover, temperature)
SENT(windDir, windSpeed) SENT(precipPotential, rainChance)]
D → SENT(skyCover, temperature) [SENT(windSpeed, windDir, gust)]
D → SENT(skyCover, temperature) SENT(windSpeed)]
D → SENT(precipPotential, rainChance) [SENT(skyCover, temperature)
SENT(windDir, windSpeed, gust)]
D → SENT(rainChance) [SENT(skyCover, temperature)
SENT(windSpeed, windDir, gust) SENT(precipPotential)]
D → SENT(rainChance temperature, windDir, windSpeed)
SENT(precipPotential)
D → SENT(skyCover, temperature) SENT(windSpeed, windDir)
D → SENT(precipPotential, rainChance) [SENT(skyCover, temperature)
SENT(windSpeed, windDir, gust)]
D → SENT(rainChance) [SENT(skyCover, temperature)
SENT(windDir, windSpeed) SENT(gust) SENT(precipPotential)]
D → SENT(rainChance) [SENT(skyCover, temperature) SENT(windSpeed)
SENT(precipPotential)]
D → SENT(rainChance) [SENT(temperature, windDir, windSpeed) SENT(gust)
SENT(precipPotential)]
D → SENT(rainChance, snowChance) [SENT(skyCover, temperature)
SENT(windDir, windSpeed) SENT(precipPotential, snowChance)]
D → SENT(rainChance) [SENT(skyCover, temperature)
SENT(windDir, windSpeed)]
D → SENT(rainChance, thunderChance) [SENT(temperature, windDir)
SENT(windSpeed gust) SENT(precipPotential)]
D → SENT(rainChance, thunderChance) [SENT(temperature)
SENT(windSpeed, windDir) SENT(gust) SENT(precipPotential)
SENT(rainChance)]
D → SENT(rainChance, thunderChance) [SENT(skyCover, temperature)
SENT(windDir, windSpeed) SENT(precipPotential) SENT(rainChance,
thunderChance)]
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B.1.2 DP-AUTO

D → SENT(skyCover, temperature) SENT(windDir, windSpeed)
D → SENT(rainChance) SENT(skyCover, temperature)
SENT(windDir, windSpeed) SENT(precipPotential)]
D → SENT(skyCover, temperature) SENT(windDir, windSpeed, gust)
D → SENT(precipPotential, rainChance) [SENT(skyCover, temperature)
SENT(windDir, windSpeed)]
D → SENT(rainChance) [SENT(skyCover, temperature)
SENT(windDir, windSpeed) SENT(precipPotential, rainChance)]
D → SENT(skyCover, temperature) [SENT(windSpeed, windDir) SENT(gust)]
D → SENT(skyCover, temperature) SENT(windSpeed)
D → SENT(rainChance) [SENT(skyCover, temperature)
SENT(windDir, windSpeed) SENT(precipPotential)]
D → SENT(precipPotential, rainChance) [SENT(skyCover, temperature)
SENT(windDir, windSpeed, gust)]
D → SENT(rainChance) [SENT(skyCover, temperature)
SENT(windSpeed, windDir) SENT(gust) SENT(precipPotential)]
D → SENT(rainChance)[ SENT(temperature) SENT(windDir, windSpeed)
SENT(precipPotential)]
D → SENT(skyCover, temperature) SENT(windSpeed, windDir)
D → SENT(rainChance) [SENT(skyCover, temperature)
SENT(windDir, windSpeed, gust) SENT(precipPotential)]
D → SENT(precipPotential, rainChance) [SENT(skyCover, temperature)
SENT(windSpeed, windDir) SENT(gust)]
D → SENT(rainChance) [SENT(temperature) SENT(windDir, windSpeed, gust)
SENT(precipPotential)]
D → SENT(rainChance, snowChance) [SENT(skyCover, temperature)
SENT(windDir, windSpeed) SENT(precipPotential, snowChance)]
D → SENT(rainChance, thunderChance) [SENT(temperature)
SENT(windDir, windSpeed) SENT(gust, precipPotential)]
D → SENT(rainChance, thunderChance) [SENT(skyCover, temperature)
SENT(windDir, windSpeed) SENT(precipPotential, rainChance, thunderChance)]
D → SENT(rainChance) [SENT(skyCover, temperature)
SENT(windDir, windSpeed)]
D → SENT(rainChance, thunderChance) [SENT(temperature)
SENT(windSpeed, windDir, gust) SENT(precipPotential, rainChance)]
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B.2 WINHELP Document Plan Rules

B.2.1 DP-UNSUP

D → SENT(nav-desk, nav-start, nav-start-target)
〈D. . .SENT(nav-desk, nav-start, nav-start-target)〉
D → SENT(nav-desk, nav-start, nav-start-target, nav-win-target)
〈D. . .SENT(nav-desk, nav-start, nav-start-target, nav-win-target)〉
D → SENT(nav-desk-target) 〈D. . .SENT(nav-desk-target)〉
D → SENT(nav-desk, nav-win-target) 〈D. . .SENT(nav-desk, nav-win-target)〉
D → SENT(nav-desk, nav-desk-target) 〈D. . .SENT(nav-desk, nav-desk-target)〉
D → SENT(nav-win-target) 〈D. . .SENT(nav-win-target)〉
D → SENT(nav-desk, exit-contMenu) 〈D. . .SENT(nav-desk, exit-contMenu)〉
D → SENT(nav-win, nav-win-target) 〈D. . .SENT(nav-win, nav-win-target)〉
D → SENT(nav-start, nav-start-target) 〈D. . .SENT(nav-start,
nav-start-target)〉
D → SENT(nav-desk, nav-win-target, nav-desk-target)
〈D. . .SENT(nav-desk, nav-win-target, nav-desk-target)〉
D → SENT(nav-desk, nav-start, nav-win-target) 〈D. . .SENT(nav-desk,
nav-start, nav-win-target)〉
D → SENT(nav-desk, nav-start, nav-start-target) SENT(nav-win,
nav-win-target)
D → SENT(nav-desk, nav-start, nav-start-target) SENT(action-contMenu,
exit-contMenu)
D → SENT(nav-desk, nav-start, action-contMenu, nav-win-target)
〈D. . .SENT(nav-desk, nav-start, action-contMenu, nav-win-target)〉
D → SENT(nav-desk, nav-start-target) 〈D. . .SENT(nav-desk,
nav-start-target)〉
D → SENT(nav-desk, nav-start) 〈D. . .SENT(nav-desk, nav-start)〉
D → SENT(nav-desk-target, nav-win-target) 〈D. . .SENT(nav-desk-target,
nav-win-target)〉
D → SENT(action-contMenu) 〈D. . .SENT(action-contMenu)〉
D → SENT(nav-win, nav-win-target, nav-desk-target)
〈D. . .SENT(nav-win, nav-win-target, nav-desk-target)〉
D → SENT(nav-win, nav-win-target) SENT(nav-contMenu, action-contMenu,
exit-contMenu)
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B.2.2 DP-AUTO

D → SENT(nav-desk, nav-start, nav-start-target)
〈D. . .SENT(nav-desk, nav-start, nav-start-target)〉
D → SENT(nav-desk, nav-desk-target) 〈D. . .SENT(nav-desk, nav-desk-target)〉
D → SENT(nav-desk, nav-start, nav-start-target, nav-win-target)
〈D. . .SENT(nav-desk, nav-start, nav-start-target, nav-win-target)〉
D → SENT(nav-desk-targe)t 〈D. . .SENT(SENT-nav-desk-target)〉
D → SENT(nav-win, nav-win-target) 〈D. . .SENT(nav-win, nav-win-target)〉
D → SENT(nav-location, nav-program, nav-program-target)
〈D. . .SENT(nav-location, nav-program, nav-program-target)〉
D → SENT(SENT-nav-win-target) 〈D. . .SENT(SENT-nav-win-target)〉
D → SENT(nav-program, nav-program-target, nav-contMenu)
〈D. . .SENT(nav-program, nav-program-target, nav-contMenu)〉
D → SENT(nav-location, nav-desk, nav-desk-target)
〈D. . .SENT(nav-location, nav-desk, nav-desk-target)〉
D → SENT(nav-desk, nav-start, nav-start-target, nav-win-target)
SENT(nav-contMenu, action-contMenu)
D → SENT(nav-desk, nav-start, nav-start-target) SENT(nav-win,
nav-win-target)
D → SENT(nav-desk, nav-start, nav-start-target) SENT(action-contMenu,
exit-contMenu)
D → SENT(nav-desk, nav-start) 〈D. . .SENT(nav-desk, nav-start)〉
D → SENT(nav-desk-target, nav-win-target) 〈D. . .SENT(nav-desk-target,
nav-win-target)〉
D → SENT(nav-desk) 〈D. . .SENT(SENT-nav-desk)〉
D → SENT(nav-win, nav-win-target) SENT(nav-contMenu, action-contMenu,
exit-contMenu)
D → SENT(nav-win, nav-win-target) SENT(nav-contMenu, action-contMenu)
D → SENT(nav-win, nav-win-target) SENT(action-contMenu, exit-contMenu)
D → SENT(nav-win, nav-win-target) SENT(action-contMenu)
D → SENT(nav-start, nav-start-target) 〈D. . .SENT(nav-start,
nav-start-target)〉





Appendix C

Experimental Instructions

In the following sections we give the experimental instructions we supplied the hu-

man judges with, prior to conducting the human evaluation experiments presented in

Sections 4.5 and 5.5. The experiments were performed over the Internet using Ama-

zon Mechanical Turk (www.mturk.com). The experiment instructions includ an intro-

duction to the task with some background information for the domain, followed by

rating examples and guidelines. In the end we also included some procedural infor-

mation and further guidance on acquiring personal details. Sections C.1-C.4 corre-

spond to the experiments evaluating the models presented in Chapter 4 for ROBOCUP,

WEATHERGOV, ATIS, and WINHELP, across two dimensions, namely fluency and se-

mantic correctness. Section C.5 corresponds to the experiments evaluating the models

presented in Chapter 5 for WINHELP only, across three dimensions, namely, fluency,

semantic correctness, and coherence. Finally, we give the procedural and personal

details instructions in Section C.1 only, for the sake of brevity.

C.1 ROBOCUP instructions

Instructions

In this experiment you will be given tables that contain some facts about a soccer game

and their translation in natural language. For instance, Example 1 below describes an

action that passes the ball (see the column labelled as Category in the table) who is

performing it (i.e., pink3; see Field Actor) and who is the Recipient (i.e., pink7).

Here the table is translated as: Pink3 kicks out to Pink7.
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Example 1

Category Fields

Pass Actor: pink3 Recipient: pink7

Pink3 kicks out to Pink7.

Typically, tables will describe a single action (e.g., Pass, Kick) accompanied with

a few fields (e.g., Actor, Recipient in Example 1) and their values (e.g., pink3, pink7).

Some events may not have fields.

All natural language translations have been generated by a computer program. Your

task is to rate the translations on two dimensions, namely Fluency and Semantic Cor-

rectness on a scale from 1 to 5.

As far as Fluency is concerned, you should judge whether the translation is gram-

matical and in well-formed English or just gibberish. If the translation is grammatical,

then you should rate it high in terms of fluency. If there is a lot of repetition in the

translation or if it seems like word salad, then you should give it a low number.

Semantic Correctness refers to the meaning conveyed by the translation and whether

it corresponds to what is reported in the tabular data. In other words, does the trans-

lation convey the same content as the table or not? If the translation has nothing to

do with the actions, fields or values described in the table, you should probably give

it a low number for Semantic Correctness. If the translation captures most of the in-

formation listed in the table, then you should give it a high number. Bear in mind that

the translation might paraphrase what is mentioned in the table. Example pink7 in the

table might be translated as pinkie7. Such slight divergences are normal and should

not be penalized.

Rating Examples

n Example 1 you would probably give the translation a high score for Fluency, 4-5,

since it is coherent and does not contain any grammatical errors. However, you would

probably give it a mid-range score for Semantic Correctness (e.g., 3 or 4) because the

table describes a passing event whereas the translation mentions a kicking event (i.e.,

the two events are not the same).
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Example 2

Category Fields

Kick Actor: purple7 Recipient: purple5

Purple7 kicks the ball out to Purple5.

In example 2 you should give the translation high scores for both dimensions (e.g., 4

or 5), Fluency and Semantic Correctness. The text is grammatical and describes the

content of the table accurately. 4-5 would be good scores.

Example 3

Category Fields

Pass Actor: purple3 Recipient: purple5

To Purple5. To Purple5.

In example 3 the translation is neither fluent nor semantically correct. So you would

probably give it a low score on both dimensions (e.g., 1 or 2). The text is repetitive

and not very descriptive of the content of the table. The phrase to Purple5 probably

corresponds to the Recipient field with the value purple5 but it is not clear from the

translation who is doing what to purple5. 1-2 are the appropriate scores for both

dimensions.

Procedure

Before you start the experiment below you will be asked to enter your personal details.

Next, you will be presented with 15 table-translation pairs to evaluate in the manner

described above. You will be shown one pair at a time. Once you finish with your

rating, click the button at the bottom right to advance to the next response.

Things to remember:

• If you are unsure how to rate a translation, click on the top right of your window

the Help link. You may also leave it open during the course of the experiment as

a reference.

• Higher numbers represent a positive opinion of the translation and lower num-

bers a negative one.
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• Do not spend too long analysing the translations; you should be able to rate them

once you have read them for the first time.

• There is no right or wrong answer, so use your own judgement when rating each

translation.

Personal Details

As part of the experiment we will ask you for a couple of personal details. This infor-

mation will be treated confidentially and will not be made available to a third party. In

addition, none of your responses will be associated with your name in any way. We

will ask you to supply the following information.

• Your name and email address.

• Your age and sex.

• To specify, under ‘Language Region’, the place (city, region/state/province, coun-

try) where you have learnt your first language.

• To enter the code provided at the end of the experiment into the Mechanical Turk

HIT.

C.2 WEATHERGOV Instructions

Instructions

In this experiment you will be given tables that contain some facts about the weather

(e.g., Temperature, Chance of Rain, Wind Direction, Cloud Coverage and so on) and

their translation in natural language. Example 1 below tabulates such weather related

information and its translation as Rainy with a high near 47. Windy, with an east wind

between 5 and 15 mph.
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Example 1

Category Fields

Temperature time: 17-06(+1 day) min: 30 mean: 40 max: 47

Wind Direction time: 17-06(+1 day) mode: SE

Cloud Sky Cover time: 17-06(+1 day) percent: 25--50

Chance of Rain time: 17-21 mode: Likely

Rainy with a high near 47. Windy , with an east wind between 5 and 15 mph.

Each row in the table contains a different weather-related event. The first row talks

about temperature, the second one about wind direction, etc. Different event types

instantiate different fields. For example, Temperature has four fields, time, min, mean,

and max. Fields in turn have values, which can be either numbers (e.g., 47 degrees

Fahrenheit for the event Temperature), or words (e.g., Likely or Slight Chance for

the event Chance of Rain).

More specifically, you should read the above table as follows. For Temperature, the

field time and its value 17-06(+1 day) refers to temperatures measured between 5pm

and 6am of the following day. The minimum temperature recorded for that time period

is 30 degrees Fahrenheit (field min), the maximum is 47 degrees (field max) and on

average the temperature is 40 degrees (field mean). For the same time period, the wind

will blow from a south east direction (the mode of Wind Direction is SE). 25–50% of

the sky will be covered with clouds (see field percent with value 25-50 in Cloud Sky

Cover), which may be interpreted as a slightly cloudy outlook. Finally, from 5pm to

9pm it is likely to rain, as indicated by the mode field and its value Likely for the

Chance of Rain event.

Note that all temperature values are in the Fahrenheit scale. The Fahrenheit scale

is an alternative temperature scale to Celsius, proposed in 1724 by the physicist Daniel

Gabriel Fahrenheit. The formula that converts Fahrenheit degrees to Celsius is

[F] = [C] ×9
5 +32. So, for instance, −1 C = 30 F. Also note, the measure of speed

used throughout the experiment is miles per hour, mph for short.

All natural language translations have been generated by a computer program. Your

task is to rate the translations on two dimensions, namely Fluency and Semantic Cor-

rectness on a scale from 1 to 5. As far as Fluency is concerned, you should judge
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whether the translation is grammatical and in well-formed English or just gibberish. If

the translation is grammatical, then you should rate it high in terms of fluency. If there

is a lot of repetition in the translation or if it seems like word salad, then you should

give it a low number.

Semantic Correctness refers to the meaning conveyed by the translation and whether

it corresponds to what is reported in the tabular data. In other words, does the transla-

tion convey the same content as the table or not? If the translation has nothing to do

with the categories, fields or values described in the table, you should probably give it a

low number for Semantic Correctness. If the translation captures most of the informa-

tion listed in the table, then you should give it a high number. Bear in mind that slight

numerical deviations are normal and should not be penalized (e.g., it is common for

weather forecasters to round wind speed values to the closest 5, i.e., ‘50 mph’ instead

of ‘47 mph’).

Rating Examples

In Example 1, you would probably give the translation a high score for Fluency (e.g., 4

or 5), since it is coherent and does not contain any grammatical errors. However, you

should give it a low score for Semantic Correctness (e.g., 1–3), because it conveys

information that is not in the table. For example, ‘windy’ and ‘wind between 5 and 15

mph ’ both relate to wind speed but are not mentioned in the table. Let us now consider

the following example:

Example 2

Category Fields

Temperature time: 17-06(+1 day) min: 40 mean: 45 max: 50

Wind Direction time: 17-06(+1 day) mode: S

Wind Speed time: 17-06(+1 day) min: 5 mean: 7 max: 15

Cloud Sky Cover time: 17-06(+1 day) percent: 0-25

Sunny, with a low around 40. South wind between 5 and 15 mph.

Here, you should give the translation high scores on both dimensions, namely Flu-

ency and Semantic Correctness. The text is grammatical and succinctly describes the

content of the table. For example, 4 or 5 would be appropriate numbers.
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Example 3

Category Fields

Temperature time: 17-06(+1 day) min: 30 mean: 40 max:47

Wind Direction time: 17-06(+1 day) mode: ESE

Around 40. Around 40. Around 40. East wind.

In example 3, the translation scores poorly on Fluency and Semantic Correctness.

The text has many repetitions and there is no clear correspondence between the trans-

lation and the table. ‘around 40 ’ probably refers to the temperature, but it is not at all

clear from the context of the text. ‘east wind ’ again refers to wind direction, but it is

missing a verb or a preposition that would relate it to the weather outlook. Appropriate

scores for both dimensions would be 1 or 2.

Finally, while judging the translation pay attention to the values of the fields in the

table in addition to the event categories. For example, you may have an event Chance

of Rain with a value None in the mode field. This means that it is not likely to rain,

and you should penalise any mention of rain in the text, unless there is another event

Chance of Rain for a different time period with a different value in the mode field.

C.3 ATIS Instructions

Instructions

In this experiment you will be given tables that contain some facts about booking

flights, or other related information (e.g., airline codes, booking code fares and so on)

and their translation in natural language. All translations are hypothetical responses to

a telephone air-travel booking system. Example 1 below describes a query to book a

flight (see the second line that has the category Query) from New York to Seattle (see

the first line with category Flight Info). Here the table is translated as: Show me the

flights from New York going to Seattle.

Typically, tables will describe partial facts that fall under different categories and

constitute together a booking or other flight-related scenario. Each fact belongs to a

category (e.g., Flight Info, Query), accompanied with a few fields and their values.
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The values can contain either words (e.g., show for the Query category), or codes

related to cities or airports (e.g., new york or seattle for the Flight Info category).

More precisely, the field type show in the Query category, corresponds to asking

for specific information. The information that we are looking for is related to a flight

or in general flights (field what).

Example 1

Category Fields

Flight Info from: new york to: seattle

Query type: show what: flight

Show me the flights from New York going to Seattle

All natural language translations have been generated by a computer program. Your

task is to rate the translations on two dimensions, namely Fluency and Semantic Cor-

rectness on a scale from 1 to 5.

As far as Fluency is concerned, you should judge whether the translation is gram-

matical and in well-formed English or just gibberish. If the translation is grammatical,

then you should rate it high in terms of fluency. If there is a lot of repetition in the

translation or if it seems like word salad, then you should give it a low number.

Semantic Correctness refers to the meaning conveyed by the translation and whether

it corresponds to what is reported in the tabular data. In other words, does the trans-

lation convey the same content as the table or not? If the translation has nothing to

do with the categories, fields or values described in the table, you should probably

give it a low number for Semantic Correctness. If the translation captures most of the

information listed in the table, then you should give it a high number. Bear in mind

that the translation might expand and paraphrase what is mentioned in the table. For

example the field-value pair type: show in the table might be translated as ‘show me’

or ‘please give me’ or just ‘give’. Such slight divergences are normal and should not

be penalized.

Rating Examples

In Example 1 you should give the translation high scores on both dimensions, namely

Fluency and Semantic Correctness. The text is grammatical and it expresses the same
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meaning (i.e., content) as the corresponding table. Here 4-5 would be appropriate

numbers.

Example 2

Category Fields

Flight Info from: berlin to: edinburgh

Query type: show what: flight

Day day: monday dep/ar/ret: arrival

When dep/ar: arrival when: afternoon

Show me the flights from Berling going to Edinburgh on Monday

In Example 2 you would probably give the translation a high score for Fluency (e.g.

4 or 5), since it does not contain any grammatical errors. However, you should give it

a low score for Semantic Correctness, (e.g. 1 or 2), because it is missing information,

namely that the arrival at Edinburgh is in the afternoon (When category).

Example 3

Category Fields

Flight Info from: athens to: london

Query type: show what: flight

What what what flights Athens London

In example 3 the translation scores poorly on Fluency and Semantic Correctness.

The text has many repetitions, and has grammatical errors. In addition, there is no

clear correspondence between the translation and the table. Athens probably refers to

the departing airport, and London to the destination but it is not made explicit in the

translation text. Here 1 or 2 would be appropriate scores for both dimensions.

Finally, while judging the translation pay particular attention to the Query cate-

gory. You should penalise translations that appear grammatical and semantically sound

but do not verbalize the Query category if the latter is present in the table.
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C.4 WINHELP Instructions

Instructions

In this experiment you will be given tables that contain instructions on how to complete

a task on a Windows 2000 desktop environment (e.g., navigate the start menu, double-

click on a button, etc) and their translation in natural language. Typical examples

include trouble shooting, such as opening the device manager and enabling a specific

parameter, or navigating the internet options menu of the internet explorer. Example

1 below gives step-by-step instructions on how to open the device manager window

from the start menu (Navigate in Desktop, Navigate in Start Menu, Select in Start
Menu, Select in Window, Navigate in Context Menu, Final Goal). Here the table

is translated as: Click start, point to settings, click control panel. Double-click system,

on the hardware tab, click device manager.

Example 1

Category Fields

Navigate in Desktop How: left-click Target: start Type: Button

Navigate in Start Menu How: left-click Target: settings Type: Button

Select in Start Menu How: left-click Target: ctrl panel Type: Button

Select in Start Menu How: left-click Target: system Type: Item

Nav. in Context Menu How: left-click Target: hardware Type: Tab

Final Goal How: left-click Target: device manager Type: Button

Click start, point to settings, click control panel.

Double-click system, in the Internet Explorer Menu, on the hardware tab, click

device manager.

Each row in the table contains a different instruction. The first column describes in

words the different types of instructions (e.g., Select in Start Menu, Final Goal). The

following columns contain fields and their values. These give the exact details on how

to realize the instruction. For example the instruction Navigate on Desktop has three

fields, How, Target and Type. The values for these fields are left-click, start, and

Button. This can be simply interpreted as left-clicking on the start button, which is

found on the desktop. The instruction Select in Window has the values left-click,

system, and item. It can be interpreted as left-clicking on an item named ‘system’,
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found in the window, most probably opened in the previous step. Field values can

be either words (e.g., Item for the field Type), or strings (e.g., device manager or

system for the field Target). For example the second row of the table with category

Navigate in Start Menu can be described as follows: on the menu under the start

button opened from the previous step, we go to settings (field Target) which is a

click-able button (field Type) in the menu and left-click on it (field How). The next

row with the instruction Select in Start Menu, continues from the previous step as

follows: we left-click (field How) on the control panel (field Target) button

(field Type).

All natural language translations have been generated by a computer program. Your

task is to rate the translations on two dimensions, namely Fluency and Semantic Cor-

rectness on a scale from 1 to 5.

As far as Fluency is concerned, you should judge whether the translation is gram-

matical and in well-formed English or just gibberish. If the translation is grammatical,

then you should rate it high in terms of fluency. If there is a lot of repetition in the

translation or if it seems like word salad, then you should give it a low number.

Semantic Correctness refers to the meaning conveyed by the translation and whether

it corresponds to what is reported in the tabular data. In other words, does the trans-

lation convey the same content as the table or not? If the translation has nothing to

do with the instructions (i.e., categories, fields or values) described in the table. you

should probably give it a low number for Semantic Correctness. If the translation cap-

tures most of the information listed in the table, then you should give it a high number.

Rating Examples

In Example 1 you would probably give the translation a high score for Fluency (e.g.,

4-5), since it is in well-formed English and does not contain any grammatical errors.

However, you should give it a low score for Semantic Correctness (e.g., 1-3), because

it conveys information that is not in the table. For example, ‘Internet Explorer’ and

‘options menu’ possibly under the internet explorer, are never mentioned in the table

of instructions. Bare in mind that troubleshooting guides should be fairly specific. A

good step-by-step guide should not leave space for ambiguity, mixed interpretations or

omit any instruction steps mentioned in the table.
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Example 2

Category Fields

Navigate in Window How: dbl-click Target: user Type: Tree

configuration Item

Navigate in Window How: dbl-click Target: admini- Type: Item

strative templates

Nav. in Context Menu How: dbl-click Target: system Type: Item

Slct in Context Menu How: dbl-click Target: group policy Type: Item

Nav. in Context Menu How: dbl-click Target: automatic Type: Tab

updates to .adm

files

Final Goal How: left-click Target: enabled Type: Radio

Double-click user configuration, and then double-click administrative templates.

Double-click system, and then double-click group policy.

Double-click automatic update to .adm files, and click enabled.

In example 2 you should give the translation high scores on both dimensions, namely

Fluency and Semantic Correctness. The text is grammatical and it captures the content

of the table without any omissions In other words, the text is readily comprehensible

and the information described is well organized and flows from one step to the next in

a logical fashion.

Example 3

Category Fields

Navigate in Desktop How: left-click Target: start Type: Button

Navigate in Start Menu How: left-click Target: settings Type: Button

Select in Start Menu How: left-click Target: ctrl panel Type: Button

Nav. in Context Menu How: left-click Target: view Type: Button

Final Goal How: left-click Target: large icons Type: Menu

Click start, click start, and then control panel.

On the view menu, click large icons.

On the view menu, click large icons.

In example 3 the translation scores poorly across both dimensions, i.e., Fluency

and Semantic Correctness. The reader cannot work out which parts of the table are
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expressed in the text which has many repetitions and is badly organized as a whole.

The phrase ‘and then control panel ’ is missing a verb and causes ambiguity for the

user: should they click on the item ‘control panel’ or hover over it? So, 1-2 would be

appropriate scores for both dimensions.

C.5 WINHELP Instructions (with Coherence)

Instructions

In this experiment you will be given tables that contain instructions on how to complete

a task on a Windows 2000 desktop environment (e.g., navigate the start menu, double-

click on a button, etc) and their translation in natural language. Typical examples

include trouble shooting, such as opening the device manager and enabling a specific

parameter, or navigating the internet options menu of the internet explorer. Example

1 below gives step-by-step instructions on how to open the device manager window

from the start menu (Navigate in Desktop, Navigate in Start Menu, Select in Start
Menu, Select in Window, Navigate in Context Menu, Final Goal). Here the table

is translated as: Click start, point to settings, click control panel. Double-click system,

on the hardware tab, click device manager.

Example 1

Category Fields

Navigate in Desktop How: left-click Target: start Type: Button

Navigate in Start Menu How: left-click Target: settings Type: Button

Select in Start Menu How: left-click Target: ctrl panel Type: Button

Select in Start Menu How: left-click Target: system Type: Item

Nav. in Context Menu How: left-click Target: hardware Type: Tab

Final Goal How: left-click Target: device manager Type: Button

Click start, point to settings, click control panel.

Double-click system, in the Internet Explorer Menu, on the hardware tab, click

device manager.

Each row in the table contains a different instruction. The first column describes in

words the different types of instructions (e.g., Select in Start Menu, Final Goal). The
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following columns contain fields and their values. These give the exact details on how

to realize the instruction. For example the instruction Navigate on Desktop has three

fields, How, Target and Type. The values for these fields are left-click, start, and

Button. This can be simply interpreted as left-clicking on the start button, which is

found on the desktop. The instruction Select in Window has the values left-click,

system, and item. It can be interpreted as left-clicking on an item named ‘system’,

found in the window, most probably opened in the previous step. Field values can

be either words (e.g., Item for the field Type), or strings (e.g., device manager or

system for the field Target). For example the second row of the table with category

Navigate in Start Menu can be described as follows: on the menu under the start

button opened from the previous step, we go to settings (field Target) which is a

click-able button (field Type) in the menu and left-click on it (field How). The next

row with the instruction Select in Start Menu, continues from the previous step as

follows: we left-click (field How) on the control panel (field Target) button

(field Type).

All natural language translations have been generated by a computer program. Your

task is to rate the translations on three dimensions, namely Fluency, Semantic Correct-

ness and Coherence on a scale from 1 to 5.

As far as Fluency is concerned, you should judge whether the translation is gram-

matical and in well-formed English or just gibberish. If the translation is grammatical,

then you should rate it high in terms of fluency. If there is a lot of repetition in the

translation or if it seems like word salad, then you should give it a low number.

Semantic Correctness refers to the meaning conveyed by the translation and whether

it corresponds to what is reported in the tabular data. In other words, does the trans-

lation convey the same content as the table or not? If the translation has nothing to

do with the instructions (i.e., categories, fields or values) described in the table. you

should probably give it a low number for Semantic Correctness. If the translation cap-

tures most of the information listed in the table, then you should give it a high number.

Coherence refers to how comprehensible the translation is. If the text is almost

impossible to understand, then you should probably give it a low number. If the text is

readily comprehensible and does not require any effort on the reader’s part, then you

should give it a high number.
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Rating Examples

In Example 1 you would probably give the translation a high score for Fluency (e.g.,

4-5), since it is in well-formed English and does not contain any grammatical errors.

However, you should give it a low score for Semantic Correctness (e.g., 1-3), because

it conveys information that is not in the table. For example, ‘Internet Explorer’ and

‘options menu’ possibly under the internet explorer, are never mentioned in the table

of instructions. As far as Coherence is concerned you should give the translation a low-

moderate score, 1-3. Even though the text is fluent, it is rather hard to follow, especially

when reading the second sentence which contains far too many actions, making it

hard to follow. In addition, the transition from the phrase ‘double-click system’ to the

phrase ‘Internet Explorer options menu’ is ambiguous: is internet explorer a click-able

item in the system menu or an icon in a window that has popped up as a consequence

of double-clicking on system? Bare in mind that troubleshooting guides should be

fairly specific. A good step-by-step guide should not leave space for ambiguity, mixed

interpretations or omit any instruction steps mentioned in the table.

Example 2

Category Fields

Navigate in Window How: dbl-click Target: user Type: Tree

configuration Item

Navigate in Window How: dbl-click Target: admini- Type: Item

strative templates

Nav. in Context Menu How: dbl-click Target: system Type: Item

Slct in Context Menu How: dbl-click Target: group policy Type: Item

Nav. in Context Menu How: dbl-click Target: automatic Type: Tab

updates to .adm

files

Final Goal How: left-click Target: enabled Type: Radio

Double-click user configuration, and then double-click administrative templates.

Double-click system, and then double-click group policy.

Double-click automatic update to .adm files, and click enabled.

In example 2 you should give the translation high scores on both dimensions, namely

Fluency, Semantic Correctness, and Coherence. The text is grammatical, it captures

the content of the table without any omissions, and is coherent. In other words, the text
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is readily comprehensible and the information described is well organized and flows

from one step to the next in a logical fashion.

Example 3

Category Fields

Navigate in Desktop How: left-click Target: start Type: Button

Navigate in Start Menu How: left-click Target: settings Type: Button

Select in Start Menu How: left-click Target: ctrl panel Type: Button

Nav. in Context Menu How: left-click Target: view Type: Button

Final Goal How: left-click Target: large icons Type: Menu

Click start, click start, and then control panel.

On the view menu, click large icons.

On the view menu, click large icons.

In example 3 the translation scores poorly across both dimensions, i.e., Fluency,

Semantic Correctness and Coherence. The reader cannot work out which parts of the

table are expressed in the text which has many repetitions and is badly organized as a

whole. The phrase ‘and then control panel ’ is missing a verb and causes ambiguity for

the user: should they click on the item ‘control panel’ or hover over it? So, 1-2 would

be appropriate scores for all dimensions.
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