
Research Statement
Ioannis Konstas

My research focuses on building programs that automatically generate text from computer-readable input. Current
applications are restricted to tasks such as giving us the weather forecast, a list of items in our daily agenda, or trying to
answer factoid questions. However, we also want the machine to give us instructions on troubleshooting our computer,
and assist us in authoring source code by explaining the functionality of complicated snippets. We want to build
assistive technologies for educators to automatically create engaging homework for students. Ultimately, we would
like to create an intelligent machine, that can maintain an interesting and rich conversation with us, humans, and be
able to author long, creative and captivating stories, movie scripts and poems.

The majority of existing Natural Langauge Generation (NLG) systems use hard-wired rules or templates in order to
capture the input of every different application, rely on small manually annotated corpora, and make simplifying as-
sumptions when generating multi-sentence documents. I advocate end-to-end NLG systems that can adapt to multiple
domains, scale to large corpora and complex inputs and model global coherence. In my thesis [1], I proposed the
first fully-trainable model that made no assumption on the input domain, did not rely on annotated corpora, and jointly
captured the discourse structure of the generated text. In my postdoctoral research, I introduced new neural network
architectures that scale on very large corpora and can handle complex inputs, such as source code and meaning rep-
resentations; we have built the first code-to-language summarizer [2], trained on a large dataset collected from online
forums. My work on NLG draws attention on:

1. Building adaptable systems using joint models trained on unannotated data and deep learning. My contri-
butions have emphasized on creating fully-trainable end-to-end models that capture the structure of the document,
select parts of the input, and output text, jointly. Given a parallel corpus of input-output examples with no extra
annotation, my systems learn to generate text for new domains, ranging from sportscasting and flight booking
systems, to weather forecasts and troubleshooting guides. I have also designed neural network architectures that
can generalize to complex inputs, such as source code and meaning representation graphs. In my work, I have
shown that portability is a corner-stone feature for a low maintenance, highly-reusable NLG system, and have
developed approaches to achieve it.

2. Creating large scale datasets and algorithms that train efficiently. To this end, I have developed models
that are able to train on very large noisy corpora, e.g., collected from community-curated websites such as
Stackoverflow or Yahoo! Answers. The datasets can contain input representations that are quite distant from the
corresponding outputs, e.g., multiple lines of source code and the compact summary of their function. They can
also have a complicated input structure, for example multiple nested subqueries in a SQL query, or re-entrant
nodes in a meaning representation graph. In order to be able to adapt to challenging real-life domains, we need
to design trainable models that can scale to large and heterogeneous corpora.

3. Modeling global coherence of the generated document. I explored the possibility of directly modeling the
sentences in a document, and capture the inter- and intra-relations of parts of the input in them. I developed a
model that extracted patterns of multiple input records that described, for example weather-related events, and
generated a detailed multi-sentence weather forecast. I also investigated techniques that mimicked the structure
of human-authored documents, by taking a story, such as a math word problem and rewriting it to a novel one
using specific language from a theme such as Star Wars, so that it is more engaging to students, but crucially
maintaining the relationship between entities mentioned in the original. Accounting for the discourse structure
is crucial for generating output that departs from a simple concatenation of multiple sentences, and approaches
a coherent document.

1 Adaptability: Trainable end-to-end Natural Language Generation systems

NLG input data can occur naturally in different forms, as shown in Figure 1. A simple approach is to design a custom
algorithm for every domain; this has the advantage that we can then very accurately determine rules to pick parts of

1



Temperature

Time Min Mean Max
06:00-21:00 9 15 21

Wind Speed

Time Min Mean Max
06:00-21:00 15 20 30

Cloud Sky Cover

Time Percent (%)
06:00-09:00 25-50
09:00-12:00 50-75

Wind Direction
Time Mode

06:00-21:00 S

Cloudy, with a high around 20. South wind between 15 and 30 mph.

Flight

from to
lhr sea

Day Number

number dep/ar
9 departure

Month
month dep/ar

december departure

Condition
arg1 arg2 type

arrival time 1600 <

Search
type what
query flight

Give me the flights leaving London Heathrow
August ninth, coming back to Seattle before 4pm.

(a) Tabular input for weather report and flight
booking generation systems, and their outputs.

WHERE <
SUB

FROM records
SELECT Max marks

marks
FROM records

SELECT Max marks

Get the second largest value of a column.

want

believe

girl

ARG0

boy

ARG0 ARG1

ARG1

The boy wants the girl to believe him.

(b) Tree and graph-based inputs to a code-to-language and a
meaning representation generation system, and their outputs.

Figure 1: Typical inputs and outputs to NLG systems.

the input, and templates to generate the resulting text. There are two main problems though: (a) for domains that have
a similar input format type (Figure 1a), we would be unnecessarily wasting effort to fine tune different selection rules,
e.g., for wind speed events, or the departure/arrival value of the month of a flight, and (b) for domains that have a nested
open-vocabulary input space (Figure 1b), e.g., the Abstract Syntax Tree of a SQL query can contain nested sub-queries
over an unbounded number of tables and fields, we would need to spend considerable amounts of time to construct
general enough grammars, in order to achieve sufficient coverage.

Joint Modeling for Concept-to-Text Generation For domains that can be expressed in a tabular format as shown
in Figure 1a, I developed a system [3] that models content selection and surface realization with a domain-agnostic
trainable Probabilistic Context-Free Grammar (PCFG) that hierarchically captures the correspondences between the
structure of the input tables and the facts therein, and the resulting text. The benefit of using a generic PCFG is
that generation can then be recast as a common parsing problem, and be solved using existing techniques; I formally
proposed a variant of the CKY algorithm for generation [4]. The generator exhibits considerable robustness across
three domains, namely sportscasting for simulated soccer games (RoboCup), weather forecasts, and user utterances
for flight booking systems (ATIS) [1], achieving 2-8% relative increase for two out of the three domains over previous
approaches. My system easily allowed for further exploitation by introducing global features over the input [5], and
long-range dependencies on the generated output text [6, 1], attaining further gains in performance. Crucially, I showed
that using a grammar that essentially describes the generation process, we can re-train and generate for several domains.

Representing the input using Neural Networks Some domains inherently represent the input to an NLG system
with a more nested structure (Figure 1b), and therefore would require considerable engineering to port them in a
tabular format. I have been investigating deep embedding representations that attempt to directly encode the input with
minimal intervention to the original structure, using Neural Network architectures. We have developed CODE-NN [2],
a sequence-to-sequence neural generator with attention mechanism that takes as input raw code snippets and produces a
short one-line summary. CODE-NN learns word embeddings for the input tokens, currently observing them as a bag of

2



words, while ignoring order and tree structure, and uses an attentive neural layer to bias the surface realization process
towards the most important tokens, hence performing content selection at the same time. We tested our generator on
two languages, namely C# and SQL, and achieved up to 45% relative increase compared to competitive baselines.

I am currently studying the problem of generating from open-vocabulary graph-based Meaning Representations,
such as the Abstract Meaning Representation (AMR) corpus, which comprises sentences from multiple domains (e.g,
newswire, forums) and their formal meaning representations (second example in Figure 1b). The architecture of the
generator is also a sequence-to-sequence decoder using attention. Compared to source code, the context of every node
in the graph plays a more significant role, hence I am exploring richer encodings of the input: I assume an in-order
traversal of the graph, and feed every token in sequence through a multi-layer bidirectional Recurrent Neural Network
(RNN); the hidden state for each token contains information from the neighboring tokens coming from both directions.
This RNN-encoding outperforms a simple bag-of-words representation by 20%. Essentially, the model learns first to
associate small sub-graphs rather than individual tokens in the input, with small utterances in the output, and then
progressively compose and re-order them to generate the final sentence. Therefore, the model is able to generate
complex and long sentences with many concepts intertwined, such as those found in news articles and literature.

2 Scalability: Wide-coverage Neural Natural Language Generation

So far I have been advocating the utility of general purpose learning approaches that can adapt across multiple domains
and over arbitrarily complex input structures. Such models typically require significant amounts of training data.
However, existing datasets for NLG are low-resourced with only a handful of manually-annotated parallel examples.
Therefore we are posed with two challenges: (a) creating cost-effective large-scale parallel corpora when possible, or
otherwise leveraging the utility of existing large cheap resources to deal with sparsity, (b) building robust algorithms
that can efficiently scale on such large datasets.

Curating large datasets for NLG User-moderated forums are often a great source for multi-modal comparable
data. In order to train CODE-NN [2], we created a new dataset using data gathered from Stackoverflow, a popular
programming help website. We collected about 1 million posts with relevant tags for C# and SQL, filtered those
without an accepted answer, created pairs of snippets of code from the accepted answer and the title of each post, and
finally cleaned up pairs with irrelevant titles using a classifier trained on a small set of manually annotated pairs. The
resulting corpus comprises of 60k snippets–titles pairs for C# and 33k for SQL, i.e., an order of magnitude more data
compared to most previous NLG datasets (e.g., RoboCup has 1.5k examples, and ATIS has 5k examples). Interestingly,
the corpus contains challenging pairs with structurally complex input snippets and a diverse output vocabulary.

Addressing sparsity via data augmentation Low-resource trained NLG systems usually suffer from sparsity, which
translates to a very high out-of-vocabulary rate, and hence the generated output is producing lots of unknown words,
is usually very repetitive and ungrammatical. A very effective approach to battle sparsity is data augmentation. The
idea is to build a very large (and possibly noisy) synthetic dataset in order to expose the model to more input–output
pairs. In particular for AMR generation (14k AMR-sentence pairs), I pretrained on up to 20 million randomly selected
sentences from the Gigaword corpus, and attained 55% relative increase in performance compared to training on the
original dataset. The approach can be generalized, provided we have access to a corpus which is close to the domain
language of our original dataset. We can obtain the noisy input either by using an existing semantic parser, or by
reversing the generation model, i.e., by feeding the text as input.

Scaling using Neural Networks My older work on concept-to-text generation [1] recast generation as a parsing
problem, hence used a variant of inside-outside for training with EM, and an approximate k-best Viterbi search for
decoding. Unfortunately, both algorithms have a cubic time complexity, hence have trouble scaling to bigger datasets
and decoding very long inputs and outputs. In contrast, for CODE-NN and AMR generation I used neural network
architectures, which usually train in linear time and take advantage of implementations on multiple GPUs that can

3



efficiently batch multiple examples; decoding is greedy, hence linear in time too, or uses a small beam of hypotheses
that can also be parallelized.

3 Global Coherence: Modeling Document-level Structure

Current generation models often struggle to produce larger multi-sentence outputs such as paragraphs, narratives, and
ultimately conversations, because of the complex interplay of concepts across sentences. NLG systems need to model
document structure at least at one of the following levels of abstraction: (a) predict structural elements of the document,
such as connective words between sentences, (b) capture the order of sentences of the document, and (c) keep track of
events and entity mentions in order to correctly refer back to them in consequent sentences.

Learning document plans I incorporated the document structure for multi-sentence concept-to-text generation by
learning a discourse grammar following two approaches: (a) directly extracting rules representing global patterns
of record sequences within a sentence and among sentences from the data, (b) learning document plans based on
Rhetorical Structure Theory (RST; [7]). Both techniques improved the previous document planning-agnostic model
[3] on weather forecasts and troubleshooting guides by up to 9%. The model automatically learnt patterns of common
global sequences of records and ways to express them in a full document, which eliminated unnecessary repetitions of
information.

Theme rewriting Often educators need to create math word problems, which are coherent stories with clear cues
between the plot and the entities narrated therein, and the mathematical operations and values in the underlying equa-
tion. At the same time the stories need to be interesting enough, to promote the engagement and hence increase the
performance of the student in solving the problem. We developed a NLG system [8] that takes a human-authored prob-
lem, e.g., talking about owning horses, and rewrites it so that it adapts to a particular theme, e.g., blasting droids from
the Star Wars universe. Our process progressively edits the original story, by introducing highly thematized concepts,
but crucially maintaining the semantic congruity at the document level with the original problem. For example, if the
original problem narrates a story on the concepts of buying chairs and tables, we would like to rewrite it to a story
of buying starships and laser-guns. Our approach uses no theme-specific data, therefore can be easily ported to new
themes; it achieves indistinguishable performance to humans in terms of thematicity, coherence and solvability.

Future Research

I have outlined my contributions on creating end-to-end trainable NLG systems that can adapt to multiple domains,
scale to complex inputs and large datasets and capture document-level structure. I am also interested in pursuing
novel areas of research:

Evaluation The majority of NLG systems are evaluated automatically, by measuring the lexical overlap between the
generated output and (usually) a single gold text. One caveat is that often semantically correct outputs are unfairly
penalized, because of little overlap with the original text. I am interested in designing metrics that aim to account
for the semantic compatibility of the output with respect to the input. For example, given the reference text we could
automatically create simple questions based on shallow semantic representations, such as “Who did what?”, and crowd-
source the answers as gold standard. Then we could investigate methods to automatically identify and measure the
number of correct –potentially paraphrased– answers contained in the generated output.

Story Generation Most existing NLG systems output text that contains facts or describes some part of the input.
Telling a non-factual story, on the other hand, poses many challenges than can lead to fascinating areas of research
including: (a) modeling the structure of a narrative and the characters involved, (b) generate a story based on an existing
plot or script, and ultimately (c) generating a plot which is interesting and novel, either as a first step or jointly with
the resulting story. An interesting approach would be to introduce to the original sequence to sequence architecture an

4



extra RNN layer that will model directly the sequence of sentences; then we can use an existing script as supervision
to train it, or even interpolate with a character model.

Conversational Agents As intelligent devices become more accessible, so will the need for better, longer and more
accurate communication between humans and machines. Existing dialogue systems currently fall under two extremes:
(a) they are either confined to very small domains, e.g., booking hotels or giving directions and recommendations, (b)
they resemble chat-bots with limited or no goals to communicate. I am interested in building conversational agents
that can address a wide variety of topics, and are able to model and maintain discussion beyond a single response.
The ideal system should be able to use sophisticated language, which is in line with my current research on generating
from meaning representations such as AMR. It should be able to generate the output incrementally, so as to be more
responsive to human interruptions; ideas can be borrowed from my previous work on incrementality of language and
semantics [9, 10]. Finally, it should use elements of common-sense knowledge, in order to generate text that does not
immediately derive from facts, and ultimately be able to make inference on existing facts in order to produce new.

References
[1] Ioannis Konstas. Joint Models for Concept-to-Text Generation. PhD thesis, University of Edinburgh, 2014.
[2] Srinivasan Iyer, Ioannis Konstas, Alvin Cheung, and Luke Zettlemoyer. Summarizing source code using a neural attention

model. In Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), pages 2073–2083, Berlin, Germany, August 2016. Association for Computational Linguistics.

[3] Ioannis Konstas and Mirella Lapata. Unsupervised concept-to-text generation with hypergraphs. In Proceedings of the 2012
Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technolo-
gies, pages 752–761, Montréal, Canada, June 2012. Association for Computational Linguistics.

[4] Ioannis Konstas and Mirella Lapata. A global model for concept-to-text generation. Journal of Artificial Intelligence Re-
search, 48(1):305–346, October 2013.

[5] Ioannis Konstas and Mirella Lapata. Concept-to-text generation via discriminative reranking. In Proceedings of the 50th
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 369–378, Jeju Island,
Korea, July 2012. Association for Computational Linguistics.

[6] Ioannis Konstas and Mirella Lapata. Inducing document plans for concept-to-text generation. In Proceedings of the 2013
Conference on Empirical Methods in Natural Language Processing, pages 1503–1514, Seattle, Washington, USA, October
2013. Association for Computational Linguistics.

[7] William C. Mann and Sandra A. Thompson. Rhetorical structure theory: Toward a functional theory of text organization.
Text, 8(3):243–281, 1988.

[8] Rik Koncel-Kedziorski, Ioannis Konstas, Luke Zettlemoyer, and Hannaneh Hajishirzi. A theme-rewriting approach for
generating algebra word problems. In Proceedings of the 2016 Conference on Empirical Methods in Natural Language
Processing, page To Appear, Austin, Texas, USA, October 2016. Association for Computational Linguistics.

[9] Ioannis Konstas, Frank Keller, Vera Demberg, and Mirella Lapata. Incremental semantic role labeling with tree adjoining
grammar. In Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages
301–312, Doha, Qatar, October 2014. Association for Computational Linguistics.

[10] Ioannis Konstas and Frank Keller. Semantic role labeling improves incremental parsing. In Proceedings of the 53rd Annual
Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pages 1191–1201, Beijing, China, July 2015. Association for Computational Linguis-
tics.

5


